A372403 Number of k < 2^n that are neither squarefree nor prime powers.
1, 5, 16, 37, 83, 178, 374, 772, 1565, 3160, 6361, 12770, 25599, 51265, 102634, 205374, 410873, 821924, 1644070, 3288433, 6577231, 13154868, 26310347, 52621521, 105244142, 210489792, 420981295, 841964929, 1683933254, 3367871086, 6735748322, 13471504796, 26943020642
Offset: 4
Examples
Let quality Q represent a number k that is neither squarefree nor prime power. For instance, Q(k) is true if and only if Omega(k) > omega(k) > 1, i.e., A001222(k) > A001221(k) > 1. a(4) = 1 since there is one number k = 12 such that Q(k) is true; 12 < 2^4. a(5) = 5 since there are 5 numbers k such that Q(k) is true; {12, 18, 20, 24, 28} are less than 2^5. a(6) = 16 since A126706(16) < 2^6 < A126706(17), etc.
Links
- Chai Wah Wu, Table of n, a(n) for n = 4..70
Programs
-
Maple
filter:= proc(n) local F; F:= ifactors(n)[2]; nops(F) > 1 and max(F[..,2]) > 1 end proc: R:= NULL: v:= 0: for i from 4 to 20 do v:= v + nops(select(filter, [$2^(i-1)+1 .. 2^i-1])); R:= R,v; od: R; # Robert Israel, Jun 09 2024
-
Mathematica
Table[2^n - Sum[PrimePi@Floor[2^(n/k)], {k, 2, n}] - Sum[MoebiusMu[k]*Floor[#/(k^2)], {k, Floor[Sqrt[#]]}] &[2^n], {n, 4, 36} ] (* Michael De Vlieger, Jan 24 2025 *)
-
Python
from math import isqrt from sympy import mobius, nextprime, integer_log def A372403(n): m, p = (1<
Chai Wah Wu, Jun 10 2024
Formula
Extensions
a(30) onwards from Chai Wah Wu, Jun 10 2024
Comments