A372409 Determinant of the matrix obtained from [Jacobi(i-j, 2*n+1)]_{0
1, -1, 1, -3, 3, -8, -5, -5, -24, 7, 0, 0, 9, 9, -81312, -1341867, 11, -19685120, -13, -13, 0, -15, 0, -180287762432, 17, -1407939911477, 10526233598464, 19, 19, 0, 6040299856799, -21, 29830847001120768, 23, -23, 0, 115407361849089836, -25, 0, 27, 104060523591574200
Offset: 2
Keywords
Examples
a(3) = -1 since the determinant of the matrix [1, 1; Jacobi(2-1,2*3+1), Jacobi(2-2,2*3+1)] = [1, 1; 1, 0] has the value -1.
References
- L.-Y. Wang and H.-L. Wu, On certain determinants involving Legendre symbols, Ramanujan J. 58 (2022), 43-56.
Links
- R. Chapman, Determinants of Legendre symbol matrices, Acta Arith. 115 (2004), 231-244.
- Z.-W. Sun, On some determinants with Legendre symbol entries, Finite Fields Appl. 56 (2019), 285-307.
- M. Vsemirnov, On the evaluation of R. Chapman's "evil determinant", Linear Algebra Appl. 436 (2012), 4101-4106.
- M. Vsemirnov, On R. Chapman's "evil determinant": case p == 1(mod 4), Acta Arith. 159 (2013), 331-344; see also the arXiv version, arXiv:1108.4031 [math.NT], 2011-2012.
- L.-Y. Wang and H.-L. Wu, On p-th cyclotomic field and Zhi-Wei Sun's Legendre determinants over F_p, arXiv:2401.05853 [math.NT], 2024.
Programs
-
Mathematica
a[n_]:=a[n]=Det[Table[If[i==1,1,JacobiSymbol[i-j,2*n+1]],{i,1,n-1},{j,1,n-1}]]; tab={};Do[tab=Append[tab,a[n]],{n,2,42}];Print[tab]
-
PARI
a(n) = matdet(matrix(n-1, n-1, i, j, if (i==1, 1, kronecker(i-j, 2*n+1)))); \\ Michel Marcus, Apr 30 2024
-
Python
from sympy import Matrix, jacobi_symbol def A372409(n): return Matrix(n-1,n-1,[jacobi_symbol(i-j,(n<<1)|1) if i else 1 for i in range(n-1) for j in range(n-1)]).det() # Chai Wah Wu, May 01 2024
Comments