cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372413 Coefficient of x^n in the expansion of ( (1-x+x^3) / (1-x) )^n.

Original entry on oeis.org

1, 0, 0, 3, 4, 5, 21, 49, 92, 237, 595, 1331, 3169, 7787, 18487, 44108, 107036, 258349, 622371, 1508239, 3658679, 8869465, 21543005, 52399612, 127497281, 310487855, 756858661, 1846060464, 4505442967, 11003284052, 26887642756, 65735882819, 160795695676
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=1, u=1) = sum(k=0, n\s, binomial(t*n, k)*binomial((u-t+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n,k) * binomial(n-2*k-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x) / (1-x+x^3) ).

A372415 Coefficient of x^n in the expansion of ( (1-x+x^3) / (1-x)^3 )^n.

Original entry on oeis.org

1, 2, 10, 59, 366, 2332, 15121, 99276, 657894, 4391438, 29482320, 198865680, 1346655921, 9149295482, 62336961732, 425760311734, 2914151872614, 19983724103726, 137267022656710, 944287970305935, 6504676822047876, 44861522295224400, 309742638630690264
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=1, u=3) = sum(k=0, n\s, binomial(t*n, k)*binomial((u-t+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n,k) * binomial(3*n-2*k-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^3 / (1-x+x^3) ). See A366052.
Showing 1-2 of 2 results.