cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372417 Coefficient of x^n in the expansion of ( (1-x+x^3)^2 / (1-x)^3 )^n.

Original entry on oeis.org

1, 1, 3, 16, 75, 336, 1536, 7155, 33627, 158974, 755508, 3606648, 17281776, 83068766, 400368741, 1934204661, 9363509531, 45411373098, 220593832062, 1073127878085, 5227288727580, 25492636911240, 124457166046832, 608207193661734, 2974913417047440
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=2, u=3) = sum(k=0, n\s, binomial(t*n, k)*binomial((u-t+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(2*n,k) * binomial(2*n-2*k-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^3 / (1-x+x^3)^2 ). See A369231.

A372418 Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / (1-x+x^3)^2 ).

Original entry on oeis.org

1, 0, 0, 2, 2, 2, 15, 32, 53, 192, 527, 1152, 3327, 9578, 24217, 66528, 190357, 515692, 1421172, 4036034, 11272501, 31489762, 89370575, 253106188, 715642419, 2038291672, 5816775442, 16592350656, 47490009821, 136246784272, 391111252072, 1124779108330
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2/(1-x+x^3)^2)/x)
    
  • PARI
    a(n, s=3, t=2, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u-t+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(n-2*k-1,n-3*k).
Showing 1-2 of 2 results.