A372427 Numbers whose binary indices and prime indices have the same sum.
19, 33, 34, 69, 74, 82, 130, 133, 305, 412, 428, 436, 533, 721, 755, 808, 917, 978, 1036, 1058, 1062, 1121, 1133, 1143, 1341, 1356, 1630, 1639, 1784, 1807, 1837, 1990, 2057, 2115, 2130, 2133, 2163, 2260, 2324, 2328, 2354, 2358, 2512, 2534, 2627, 2771, 2825
Offset: 1
Examples
The binary indices of 130 are {2,8}, and the prime indices are {1,3,6}. Both sum to 10, so 130 is in the sequence. The terms together with their prime indices begin: 19: {8} 33: {2,5} 34: {1,7} 69: {2,9} 74: {1,12} 82: {1,13} 130: {1,3,6} 133: {4,8} 305: {3,18} 412: {1,1,27} 428: {1,1,28} The terms together with their binary expansions and binary indices begin: 19: 10011 ~ {1,2,5} 33: 100001 ~ {1,6} 34: 100010 ~ {2,6} 69: 1000101 ~ {1,3,7} 74: 1001010 ~ {2,4,7} 82: 1010010 ~ {2,5,7} 130: 10000010 ~ {2,8} 133: 10000101 ~ {1,3,8} 305: 100110001 ~ {1,5,6,9} 412: 110011100 ~ {3,4,5,8,9} 428: 110101100 ~ {3,4,6,8,9}
Links
- John Tyler Rascoe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Select[Range[100],Total[prix[#]]==Total[bix[#]]&]
Comments