A372432 Positive integers k such that the prime indices of k are not disjoint from the binary indices of k.
3, 5, 6, 14, 15, 18, 20, 22, 27, 28, 30, 39, 42, 45, 51, 52, 54, 55, 56, 60, 63, 66, 68, 70, 75, 77, 78, 85, 87, 88, 90, 91, 95, 99, 100, 102, 104, 105, 110, 111, 114, 117, 119, 121, 123, 125, 126, 133, 135, 138, 140, 147, 150, 152, 154, 159, 162, 165, 168
Offset: 1
Examples
The binary indices of 18 are {2,5}, and the prime indices are {1,2,2}, so 18 is in the sequence. The terms together with their prime indices begin: 3: {2} 5: {3} 6: {1,2} 14: {1,4} 15: {2,3} 18: {1,2,2} 20: {1,1,3} 22: {1,5} 27: {2,2,2} 28: {1,1,4} 30: {1,2,3} The terms together with their binary expansions and binary indices begin: 3: 11 ~ {1,2} 5: 101 ~ {1,3} 6: 110 ~ {2,3} 14: 1110 ~ {2,3,4} 15: 1111 ~ {1,2,3,4} 18: 10010 ~ {2,5} 20: 10100 ~ {3,5} 22: 10110 ~ {2,3,5} 27: 11011 ~ {1,2,4,5} 28: 11100 ~ {3,4,5} 30: 11110 ~ {2,3,4,5}
Crossrefs
Programs
-
Mathematica
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],Intersection[bix[#],prix[#]]!={}&]
Comments