A372438 Least binary index equals greatest prime index.
6, 18, 20, 54, 56, 60, 100, 162, 168, 176, 180, 280, 300, 392, 416, 486, 500, 504, 528, 540, 840, 880, 900, 1088, 1176, 1232, 1248, 1400, 1458, 1500, 1512, 1584, 1620, 1936, 1960, 2080, 2432, 2500, 2520, 2640, 2700, 2744, 2912, 3264, 3528, 3696, 3744, 4200
Offset: 1
Examples
The binary indices of 60 are {3,4,5,6}, the prime indices are {1,1,2,3}, and 3 = 3, so 60 is in the sequence. The terms together with their prime indices begin: 6: {1,2} 18: {1,2,2} 20: {1,1,3} 54: {1,2,2,2} 56: {1,1,1,4} 60: {1,1,2,3} 100: {1,1,3,3} 162: {1,2,2,2,2} 168: {1,1,1,2,4} 176: {1,1,1,1,5} 180: {1,1,2,2,3} 280: {1,1,1,3,4} 300: {1,1,2,3,3} The terms together with their binary expansions and binary indices begin: 6: 110 ~ {2,3} 18: 10010 ~ {2,5} 20: 10100 ~ {3,5} 54: 110110 ~ {2,3,5,6} 56: 111000 ~ {4,5,6} 60: 111100 ~ {3,4,5,6} 100: 1100100 ~ {3,6,7} 162: 10100010 ~ {2,6,8} 168: 10101000 ~ {4,6,8} 176: 10110000 ~ {5,6,8} 180: 10110100 ~ {3,5,6,8} 280: 100011000 ~ {4,5,9} 300: 100101100 ~ {3,4,6,9}
Crossrefs
A070939 gives length of binary expansion.
Programs
-
Mathematica
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[1000],Min[bix[#]]==Max[prix[#]]&]
Comments