A372439 Numbers k such that the least binary index of k plus the least prime index of k is odd.
2, 3, 6, 7, 8, 9, 10, 13, 14, 15, 18, 19, 21, 22, 24, 26, 27, 29, 30, 32, 33, 34, 37, 38, 39, 40, 42, 43, 45, 46, 49, 50, 51, 53, 54, 56, 57, 58, 61, 62, 63, 66, 69, 70, 71, 72, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102
Offset: 1
Examples
The terms (center), their binary indices (left), and their prime indices (right) begin: {2} 2 (1) {1,2} 3 (2) {2,3} 6 (2,1) {1,2,3} 7 (4) {4} 8 (1,1,1) {1,4} 9 (2,2) {2,4} 10 (3,1) {1,3,4} 13 (6) {2,3,4} 14 (4,1) {1,2,3,4} 15 (3,2) {2,5} 18 (2,2,1) {1,2,5} 19 (8) {1,3,5} 21 (4,2) {2,3,5} 22 (5,1) {4,5} 24 (2,1,1,1) {2,4,5} 26 (6,1) {1,2,4,5} 27 (2,2,2) {1,3,4,5} 29 (10) {2,3,4,5} 30 (3,2,1) {6} 32 (1,1,1,1,1) {1,6} 33 (5,2) {2,6} 34 (7,1)
Crossrefs
Programs
-
Mathematica
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],OddQ[Min[bix[#]]+Min[prix[#]]]&]
Comments