cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372506 Coefficient of x^n in the expansion of 1 / ( (1-x) * (1-2*x) )^n.

Original entry on oeis.org

1, 3, 23, 198, 1795, 16758, 159446, 1537308, 14967843, 146833830, 1449054178, 14369723316, 143072565454, 1429331585724, 14320668653580, 143838879376248, 1447883909314851, 14602334949928710, 147518977428892010, 1492559101878005700, 15121898521185194970
Offset: 0

Views

Author

Seiichi Manyama, May 04 2024

Keywords

Crossrefs

Programs

  • Maple
    A372506 := proc(n)
        add(binomial(n+k-1,k)*binomial(3*n-1,n-k),k=0..n) ;
    end proc:
    seq(A372506(n),n=0..80) ; # R. J. Mathar, Oct 24 2024
  • Mathematica
    Table[SeriesCoefficient[1/((1 - x)*(1 - 2*x))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 04 2024 *)
    Table[Binomial[3*n - 1, n] * Hypergeometric2F1[-n, n, 2*n, -1], {n, 0, 20}] (* Vaclav Kotesovec, May 04 2024 *)
  • PARI
    a(n, s=1, t=1, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t+u+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..n} binomial(n+k-1,k) * binomial(3*n-1,n-k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x) * (1-2*x) ).
a(n) ~ (1 + sqrt(3)) * 2^(n - 3/2) * 3^((3*n-1)/2) / sqrt(Pi*n). - Vaclav Kotesovec, May 04 2024
D-finite with recurrence 5*n*(n-1)*a(n) +18*(n-1)*(n-3)*a(n-1) +12*(-45*n^2+90*n-22)*a(n-2) -216*(3*n-7)*(3*n-8)*a(n-3)=0. - R. J. Mathar, Oct 24 2024