cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A372531 Expansion of g.f. A(x) satisfying A(x)^3 = A( x*A(x)^2/(1 - A(x)) ).

Original entry on oeis.org

1, 1, 2, 6, 19, 63, 220, 795, 2942, 11100, 42547, 165204, 648423, 2568522, 10255044, 41226054, 166732446, 677922831, 2769487183, 11362238976, 46794199487, 193387049685, 801742251778, 3333468469185, 13896609698686, 58073938493679, 243238872937589, 1020921149848044
Offset: 1

Views

Author

Paul D. Hanna, May 14 2024

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 19*x^5 + 63*x^6 + 220*x^7 + 795*x^8 + 2942*x^9 + 11100*x^10 + 42547*x^11 + 165204*x^12 + ...
where A( x*A(x)^2/(1 - A(x)) ) = A(x)^3.
RELATED SERIES.
A(x)^3 = x^3 + 3*x^4 + 9*x^5 + 31*x^6 + 111*x^7 + 405*x^8 + 1511*x^9 + 5742*x^10 + 22131*x^11 + 86310*x^12 + ...
Let R(x) be the series reversion of g.f. A(x), R(A(x)) = x, then
R(x) = x * Product_{n>=0} (1 - x^(3^n)) = x - x^2 - x^4 + x^5 - x^10 + x^11 + x^13 - x^14 - x^28 + x^29 + x^31 - x^32 + x^37 - x^38 - x^40 + x^41 - x^82 + ... + (-1)^A010060(n-1)*x^(A005836(n) + 1) + ...
thus,
x = A(x) * (1 - A(x)) * (1 - A(x)^3) * (1 - A(x)^9) * (1 - A(x)^27) * (1 - A(x)^81) * ... * (1 - A(x)^(3^n)) * ...
SPECIFIC VALUES.
A(t) = 2/5 at t = (2/5) * Product_{n>=0} (1 - (2/5)^(3^n)) = 0.224581111967794306351236678951339491766788581...
A(t) = 1/3 at t = (1/3) * Product_{n>=0} (1 - 1/3^(3^n)) = 0.213980897639074346024397964153942364246900732...
A(t) = 1/4 at t = (1/4) * Product_{n>=0} (1 - 1/4^(3^n)) = 0.184569608420133580452570741795926229187208705...
A(1/5) = 0.2875735682779125398024437286065851185781152551441974155...
A(1/6) = 0.2142049226274852453913309509157678575015367219972692281...
A(1/7) = 0.1738274438474723142423128822604443845966959546404795042...
A(1/6)^3 = A(t) at t = (1/6)*A(1/6)^2/(1 - A(1/6)) = 0.0097319157371...
A(1/7)^3 = A(t) at t = (1/7)*A(1/7)^2/(1 - A(1/7)) = 0.0052247784954...
		

Crossrefs

Programs

  • PARI
    /* From Series_Reversion( x * Product_{n>=0} (1 - x^(3^n)) ) */
    {a(n) = my(A, M=ceil(log(n+1)/log(3))); A = serreverse( x * prod(m=0,M, 1 - x^(3^m)) + x*O(x^n) ); polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    /* From A(x)^3 = A( x*A(x)^2/(1 - A(x)) ) */
    {a(n) = my(A=[0, 1],F); for(i=1, n, A = concat(A, 0); F=Ser(A);
    A[#A] = polcoeff( subst(F, x, x*F^2/(1 - F) ) - F^3, #A+1) ); H=A; A[n+1]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 = A( x*A(x)^2/(1 - A(x)) ).
(2) A(x)^9 = A( x*A(x)^8/((1 - A(x))*(1 - A(x)^3)) ).
(3) A(x)^27 = A( x*A(x)^26/((1 - A(x))*(1 - A(x)^3)*(1 - A(x)^9)) ).
(4) A(x)^(3^n) = A( x*A(x)^(3^n-1)/Product_{k=0..n-1} (1 - A(x)^(3^k)) ) for n > 0.
(5) A(x) = x / Product_{n>=0} (1 - A(x)^(3^n)).
(6) A(x) = Series_Reversion( x * Product_{n>=0} (1 - x^(3^n)) ).
(7) x = A(x) * Sum_{n>=1} (-1)^A010060(n-1) * A(x)^A005836(n), where A010060 is the Thue-Morse sequence and A005836 lists numbers whose base-3 representation contains no 2.
The radius of convergence r and A(r) satisfy 1 = Sum_{n>=0} 3^n * A(r)^(3^n)/(1 - A(r)^(3^n)) and r = A(r) * Product_{n>=0} (1 - A(r)^(3^n)), where r = 0.225516184149820697566779292359148589008135334130979... and A(r) = 0.426459850024068213581384788221931983633117762268826...

A373312 Expansion of g.f. A(x) satisfying A(x)^2 = A( x*A(x)/(1 - A(x))^2 ).

Original entry on oeis.org

1, 2, 9, 46, 266, 1636, 10529, 69974, 476598, 3309212, 23336626, 166686732, 1203409180, 8767531432, 64378620609, 475951684454, 3539801952222, 26466142669804, 198814291126846, 1499817211781796, 11357495427008900, 86302897747248024, 657858710864911954, 5029067212015246972
Offset: 1

Views

Author

Paul D. Hanna, Jun 25 2024

Keywords

Comments

Conjecture: a(n) == 1 (mod 2) iff n = 2^k - 1 for k >= 1.

Examples

			G.f.: A(x) = x + 2*x^2 + 9*x^3 + 46*x^4 + 266*x^5 + 1636*x^6 + 10529*x^7 + 69974*x^8 + 476598*x^9 + 3309212*x^10 + ...
where A( x*A(x)/(1 - A(x))^2 ) = A(x)^2.
RELATED SERIES.
A(x)^2 = x^2 + 4*x^3 + 22*x^4 + 128*x^5 + 797*x^6 + 5164*x^7 + 34506*x^8 + 235984*x^9 + 1643882*x^10 + ...
Let R(x) be the series reversion of g.f. A(x), R(A(x)) = x, then
R(x) = x * Product_{n>=0} (1 - x^(2^n))^2 = x - 2*x^2 - x^3 + 4*x^4 - 3*x^5 + 2*x^6 + 3*x^7 - 8*x^8 + x^9 + 6*x^10 + ... + A106407(n-1) * x^n + ...
thus,
x = A(x) * (1 - A(x))^2 * (1 - A(x)^2)^2 * (1 - A(x)^4)^2 * (1 - A(x)^8)^2 * (1 - A(x)^16)^2 * ... * (1 - A(x)^(2^n))^2 * ...
Also, notice that the square root of A(x)/x is an integral series
(A(x)/x)^(1/2) = 1 + x + 4*x^2 + 19*x^3 + 106*x^4 + 636*x^5 + 4024*x^6 + 26405*x^7 + 178096*x^8 + 1227018*x^9 + 8598424*x^10 + ...
SPECIFIC VALUES.
A(t) = 1/5 at t = (1/5) * Product_{n>=0} (1 - 1/5^(2^n))^2 = 0.1175870125805304806733576532618445158357121658...
A(t) = 1/6 at t = (1/6) * Product_{n>=0} (1 - 1/6^(2^n))^2 = 0.1092311136132535692899568885022954464596243049...
A(1/9) = 0.17288740832245782814001741323630181133096513764543378...
A(1/10) = 0.1413215396171684711943139566840401836123301177323661...
A(1/11) = 0.1213541857717280074895334383318404648498876032468172...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = serreverse(x*prod(k=0,#binary(n), (1 - x^(2^k) + x*O(x^n))^2))); polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( subst(Ser(A),x, x*Ser(A)/(1 - Ser(A))^2 ) - Ser(A)^2,#A)); A[n+1]}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^2 = A( x*A(x)/(1 - A(x))^2 ).
(2) A(x)^4 = A( x*A(x)^3/((1 - A(x))^2*(1 - A(x)^2)^2) ).
(3) A(x)^8 = A( x*A(x)^7/((1 - A(x))^2*(1 - A(x)^2)^2*(1 - A(x)^4)^2) ).
(4) A(x)^(2^n) = A( x*A(x)^(2^n-1)/Product_{k=0..n-1} (1 - A(x)^(2^k))^2 ) for n > 0.
(5) A(x) = x / Product_{n>=0} (1 - A(x)^(2^n))^2.
(6) A(x) = x * Product_{n>=0} (1 + A(x)^(2^n))^(2*(n+1)).
(7) A(x) = Series_Reversion( x*B(x) ), where B(x) = Product_{n>=0} (1 - x^(2^n))^2 is the g.f. of A106407.
The radius of convergence r and A(r) satisfy 1 = Sum_{n>=0} 2*2^n * A(r)^(2^n)/(1 - A(r)^(2^n)) and r = A(r) * Product_{n>=0} (1 - A(r)^(2^n))^2, where r = 0.1226755376200489039634571399751738538057851136283925... and A(r) = 0.2554610761187220452590974770035518728586331311247120...
Given r and A(r) above, A(r) also satisfies 1 = Sum_{n>=0} 2*(n+1)*2^n * A(r)^(2^n)/(1 + A(r)^(2^n)).

A373313 Expansion of g.f. A(x) satisfying A(x)^2 = A( x*A(x)/(1 - A(x))^3 ).

Original entry on oeis.org

1, 3, 18, 127, 999, 8376, 73400, 664143, 6157467, 58190531, 558478098, 5428532148, 53331912158, 528721992000, 5282688183600, 53140908294191, 537760961917833, 5470638540940401, 55914705172750446, 573908634206898951, 5913010265931479289, 61132102068652970100, 634002859944973526904
Offset: 1

Views

Author

Paul D. Hanna, Jun 25 2024

Keywords

Examples

			G.f.: A(x) = x + 3*x^2 + 18*x^3 + 127*x^4 + 999*x^5 + 8376*x^6 + 73400*x^7 + 664143*x^8 + 6157467*x^9 + 58190531*x^10 + ...
where A( x*A(x)/(1 - A(x))^3 ) = A(x)^2.
RELATED SERIES.
A(x)^2 = x^2 + 6*x^3 + 45*x^4 + 362*x^5 + 3084*x^6 + 27318*x^7 + 249149*x^8 + 2323968*x^9 + 22067697*x^10 + ...
Let R(x) be the series reversion of g.f. A(x), R(A(x)) = x, then
R(x) = x * Product_{n>=0} (1 - x^(2^n))^3 = x - 3*x^2 + 8*x^4 - 9*x^5 + 3*x^6 + 8*x^7 - 24*x^8 + 15*x^9 + 19*x^10 + ... + A373308(n-1) * x^n + ...
thus,
x = A(x) * (1 - A(x))^3 * (1 - A(x)^2)^3 * (1 - A(x)^4)^3 * (1 - A(x)^8)^3 * (1 - A(x)^16)^3 * ... * (1 - A(x)^(2^n))^3 * ...
Also, notice that the cube root of A(x)/x is an integral series
(A(x)/x)^(1/3) = 1 + x + 5*x^2 + 32*x^3 + 239*x^4 + 1937*x^5 + 16578*x^6 + 147408*x^7 + 1348465*x^8 + 12608851*x^9 + 119972595*x^10 + ...
SPECIFIC VALUES.
A(t) = 1/6 at t = (1/6) * Product_{n>=0} (1 - 1/6^(2^n))^3 = 0.0884290923082561345726735004152032422138677544...
A(t) = 1/7 at t = (1/7) * Product_{n>=0} (1 - 1/7^(2^n))^3 = 0.0844605844040460521136280418653467784637497846...
A(t) = 1/8 at t = (1/8) * Product_{n>=0} (1 - 1/8^(2^n))^3 = 0.0798174217593180496284155971364088109289815675...
A(1/12) = 0.1379538716718371951653031812720929490038524971492263...
A(1/13) = 0.1160657279647048938238673646663527089747582497393475...
A(1/14) = 0.1016889922856297159061963243507242491941351481713051...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = serreverse(x*prod(k=0,#binary(n), (1 - x^(2^k) + x*O(x^n))^3))); polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( subst(Ser(A),x, x*Ser(A)/(1 - Ser(A))^3 ) - Ser(A)^2,#A)); A[n+1]}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^2 = A( x*A(x)/(1 - A(x))^3 ).
(2) A(x)^4 = A( x*A(x)^3/((1 - A(x))^3*(1 - A(x)^2)^3) ).
(3) A(x)^8 = A( x*A(x)^7/((1 - A(x))^3*(1 - A(x)^2)^3*(1 - A(x)^4)^3) ).
(4) A(x)^(2^n) = A( x*A(x)^(2^n-1)/Product_{k=0..n-1} (1 - A(x)^(2^k))^3 ) for n > 0.
(5) A(x) = x / Product_{n>=0} (1 - A(x)^(2^n))^3.
(6) A(x) = x * Product_{n>=0} (1 + A(x)^(2^n))^(3*(n+1)).
(7) A(x) = Series_Reversion( x*B(x) ), where B(x) = Product_{n>=0} (1 - x^(2^n))^3 is the g.f. of A373308.
The radius of convergence r and A(r) satisfy 1 = Sum_{n>=0} 3*2^n * A(r)^(2^n)/(1 - A(r)^(2^n)) and r = A(r) * Product_{n>=0} (1 - A(r)^(2^n))^3, where r = 0.090173114826637655491436994778921911119292413640909... and A(r) = 0.197474208053634831172176658351098789075712647862486...
Given r and A(r) above, A(r) also satisfies 1 = Sum_{n>=0} 3*(n+1)*2^n * A(r)^(2^n)/(1 + A(r)^(2^n)).

A372534 Expansion of g.f. A(x) satisfying A(x)^2 = A( x*A(x) + 3*x*A(x)^2 ).

Original entry on oeis.org

1, 3, 12, 63, 372, 2322, 15102, 101439, 698340, 4900914, 34931808, 252185238, 1840242546, 13551558336, 100579610790, 751610709279, 5650352546628, 42702935642082, 324256445598816, 2472613511240754, 18926918200655928, 145379893260849876, 1120198916414984148, 8656357557290045382
Offset: 1

Views

Author

Paul D. Hanna, May 29 2024

Keywords

Comments

Compare to the following identities of the Catalan function C(x) = x + C(x)^2 (A000108):
(1) C(x)^2 = C( x*C(x)*(1 + C(x)) ),
(2) C(x)^4 = C( x*C(x)^3*(1 + C(x))*(1 + C(x)^2) ),
(3) C(x)^8 = C( x*C(x)^7*(1 + C(x))*(1 + C(x)^2)*(1 + C(x)^4) ),
(4) C(x)^(2^n) = C( x*C(x)^(2^n-1)*Product_{k=0..n-1} (1 + C(x)^(2^k)) ) for n > 0.

Examples

			G.f.: A(x) = x + 3*x^2 + 12*x^3 + 63*x^4 + 372*x^5 + 2322*x^6 + 15102*x^7 + 101439*x^8 + 698340*x^9 + 4900914*x^10 + 34931808*x^11 + 252185238*x^12 + ...
where A(x)^2 = A( x*A(x) + 3*x*A(x)^2 ).
Also,
A(x) = x * (1 + 3*A(x)) * (1 + 3*A(x)^2) * (1 + 3*A(x)^4) * (1 + 3*A(x)^8) * (1 + 3*A(x)^16) * ... * (1 + 3*A(x)^(2^n)) * ...
RELATED SERIES.
A(x)^2 = x^2 + 6*x^3 + 33*x^4 + 198*x^5 + 1266*x^6 + 8388*x^7 + 57033*x^8 + 396090*x^9 + 2798718*x^10 + 20056824*x^11 + 145438146*x^12 + ...
x*A(x) + 3*x*A(x)^2 = x^2 + 6*x^3 + 30*x^4 + 162*x^5 + 966*x^6 + 6120*x^7 + 40266*x^8 + 272538*x^9 + 1886610*x^10 + 13297068*x^11 + ...
SPECIFIC VALUES.
A(1/9) = 0.20017482594200170883488591841314367600913783...
A(1/10) = 0.15939222988059047986391116283589184626082823...
A(1/11) = 0.13474373940944085584086064879196682498369755...
A(1/12) = 0.11741441277153705906655653078308588616286400...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = serreverse( x/prod(k=0, #binary(n), 1 + 3*x^(2^k) +x*O(x^n)) ));
    polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0); F=Ser(A);
    A[#A] = polcoeff( subst(F, x, x*F*(1 + 3*F) ) - F^2, #A) ); A[n+1]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^2 = A( x*A(x) + 3*x*A(x)^2 ).
(2) A(x)^4 = A( x*A(x)^3*(1 + 3*A(x))*(1 + 3*A(x)^2) ).
(3) A(x)^8 = A( x*A(x)^7*(1 + 3*A(x))*(1 + 3*A(x)^2)*(1 + 3*A(x)^4) ).
(4) A(x)^(2^n) = A( x*A(x)^(2^n-1)*Product_{k=0..n-1} (1 + 3*A(x)^(2^k)) ) for n > 0.
(5) A(x) = x * Product_{n>=0} (1 + 3*A(x)^(2^n)).
(6) A(x) = x * Sum_{n>=0} 3^A000120(n) * A(x)^n, where A000120(n) = number of 1's in binary expansion of n.
(7) A(x) = Series_Reversion( x / Product_{n>=0} (1 + 3*x^(2^n)) ).
The radius of convergence r of g.f. A(x) and A(r) satisfy 1 = Sum_{n>=0} 3*2^n * A(r)^(2^n) / (1 + 3*A(r)^(2^n)) and r = A(r) / Product_{n>=0} (1 + 3*A(r)^(2^n)), where r = 0.121354219013536538658862726712953201279180864478537... and A(r) = 0.301069983372147236415588688159692129761365234627514...

A372532 Expansion of g.f. A(x) satisfying A(x)^4 = A( x*A(x)^3/(1 - A(x)) ).

Original entry on oeis.org

1, 1, 2, 5, 15, 48, 160, 549, 1930, 6919, 25200, 92976, 346757, 1305140, 4951216, 18912245, 72675115, 280761688, 1089800460, 4248151335, 16623220558, 65273436984, 257115848688, 1015721354400, 4023189912040, 15974444935191, 63571105091684, 253513322846012, 1012942417348605
Offset: 1

Views

Author

Paul D. Hanna, May 17 2024

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 15*x^5 + 48*x^6 + 160*x^7 + 549*x^8 + 1930*x^9 + 6919*x^10 + 25200*x^11 + 92976*x^12 + ...
where A(x)^4 = A( x*A(x)^3/(1 - A(x)) ).
RELATED SERIES.
A(x)^3 = x^3 + 3*x^4 + 9*x^5 + 28*x^6 + 93*x^7 + 321*x^8 + 1136*x^9 + 4092*x^10 + 14955*x^11 + 55328*x^12 + 206829*x^13 + ...
A(x)^4 = x^4 + 4*x^5 + 14*x^6 + 48*x^7 + 169*x^8 + 608*x^9 + 2222*x^10 + 8216*x^11 + 30680*x^12 + 115556*x^13 + 438554*x^14 + ...
x*A(x)^3/(1 - A(x)) = x^4 + 4*x^5 + 14*x^6 + 48*x^7 + 168*x^8 + 600*x^9 + 2178*x^10 + 8008*x^11 + 29762*x^12 + 111644*x^13 + ...
Let R(x) be the series reversion of g.f. A(x), R(A(x)) = x, then
R(x) = x * Product_{n>=0} (1 - x^(4^n)) = x - x^2 - x^5 + x^6 - x^17 + x^18 + x^21 - x^22 - x^65 + x^66 + x^69 - x^70 + x^81 - x^82 - x^85 + x^86 - x^257 + x^258 + x^261 + ... + (-1)^A010060(n)*x^(A000695(n) + 1) + ...
thus,
x = A(x) * (1 - A(x)) * (1 - A(x)^4) * (1 - A(x)^16) * (1 - A(x)^64) * (1 - A(x)^256) * ... * (1 - A(x)^(4^n)) * ...
SPECIFIC VALUES.
A(t) = 2/5 at t = (2/5) * Product_{n>=0} (1 - (2/5)^(4^n)) = 0.2338558995596128026623999920422960979429704653...
A(t) = 1/3 at t = (1/3) * Product_{n>=0} (1 - 1/3^(4^n)) = 0.2194787328986396432551386254242908520274591882...
A(t) = 1/4 at t = (1/4) * Product_{n>=0} (1 - 1/4^(4^n)) = 0.1867675780815147845714818686246871948236698894...
A(t) = 1/5 at t = (1/5) * Product_{n>=0} (1 - 1/5^(4^n)) = 0.1597439999989531017215999999999999999999999997...
A(1/5) = 0.2791419705799491640241970731636463821918278265598702481...
A(1/6) = 0.2119087418184569371633725749849800368394048924883176302...
A(1/7) = 0.1728682698948146927220680877897385568988140527227279611...
A(1/6)^4 = A(t) at t = (1/6)*A(1/6)^3/(1 - A(1/6)) = 0.0020124210815...
A(1/7)^4 = A(t) at t = (1/7)*A(1/7)^3/(1 - A(1/7)) = 0.0008922224261..
		

Crossrefs

Programs

  • PARI
    /* From Series_Reversion( x * Product_{n>=0} (1 - x^(4^n)) ) */
    {a(n) = my(A, M=ceil(log(n+1)/log(4))); A = serreverse( x * prod(m=0, M, 1 - x^(4^m)) + x*O(x^n) ); polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    /* From A(x)^4 = A( x*A(x)^3/(1 - A(x)) ) */
    {a(n) = my(A=[0, 1], F); for(i=1, n, A = concat(A, 0); F=Ser(A);
    A[#A] = polcoeff( subst(F, x, x*F^3/(1 - F) ) - F^4, #A+2) ); H=A; A[n+1]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^4 = A( x*A(x)^3/(1 - A(x)) ).
(2) A(x)^16 = A( x*A(x)^15/((1 - A(x))*(1 - A(x)^4)) ).
(3) A(x)^64 = A( x*A(x)^63/((1 - A(x))*(1 - A(x)^4)*(1 - A(x)^16)) ).
(4) A(x)^(4^n) = A( x*A(x)^(4^n-1)/Product_{k=0..n-1} (1 - A(x)^(4^k)) ) for n > 0.
(5) A(x) = x / Product_{n>=0} (1 - A(x)^(4^n)).
(6) A(x) = Series_Reversion( x * Product_{n>=0} (1 - x^(4^n)) ).
(7) x = A(x) * Sum_{n>=0} (-1)^A010060(n) * A(x)^A000695(n), where A010060 is the Thue-Morse sequence and A000695 gives sums of distinct powers of 4.
The radius of convergence r and A(r) satisfy 1 = Sum_{n>=0} 4^n * A(r)^(4^n)/(1 - A(r)^(4^n)) and r = A(r) * Product_{n>=0} (1 - A(r)^(4^n)), where r = 0.23735646078435954136834955920887956765296150123281028... and A(r) = 0.45218226260527732381925578383609182019094441327410056...
Showing 1-5 of 5 results.