cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372532 Expansion of g.f. A(x) satisfying A(x)^4 = A( x*A(x)^3/(1 - A(x)) ).

Original entry on oeis.org

1, 1, 2, 5, 15, 48, 160, 549, 1930, 6919, 25200, 92976, 346757, 1305140, 4951216, 18912245, 72675115, 280761688, 1089800460, 4248151335, 16623220558, 65273436984, 257115848688, 1015721354400, 4023189912040, 15974444935191, 63571105091684, 253513322846012, 1012942417348605
Offset: 1

Views

Author

Paul D. Hanna, May 17 2024

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 15*x^5 + 48*x^6 + 160*x^7 + 549*x^8 + 1930*x^9 + 6919*x^10 + 25200*x^11 + 92976*x^12 + ...
where A(x)^4 = A( x*A(x)^3/(1 - A(x)) ).
RELATED SERIES.
A(x)^3 = x^3 + 3*x^4 + 9*x^5 + 28*x^6 + 93*x^7 + 321*x^8 + 1136*x^9 + 4092*x^10 + 14955*x^11 + 55328*x^12 + 206829*x^13 + ...
A(x)^4 = x^4 + 4*x^5 + 14*x^6 + 48*x^7 + 169*x^8 + 608*x^9 + 2222*x^10 + 8216*x^11 + 30680*x^12 + 115556*x^13 + 438554*x^14 + ...
x*A(x)^3/(1 - A(x)) = x^4 + 4*x^5 + 14*x^6 + 48*x^7 + 168*x^8 + 600*x^9 + 2178*x^10 + 8008*x^11 + 29762*x^12 + 111644*x^13 + ...
Let R(x) be the series reversion of g.f. A(x), R(A(x)) = x, then
R(x) = x * Product_{n>=0} (1 - x^(4^n)) = x - x^2 - x^5 + x^6 - x^17 + x^18 + x^21 - x^22 - x^65 + x^66 + x^69 - x^70 + x^81 - x^82 - x^85 + x^86 - x^257 + x^258 + x^261 + ... + (-1)^A010060(n)*x^(A000695(n) + 1) + ...
thus,
x = A(x) * (1 - A(x)) * (1 - A(x)^4) * (1 - A(x)^16) * (1 - A(x)^64) * (1 - A(x)^256) * ... * (1 - A(x)^(4^n)) * ...
SPECIFIC VALUES.
A(t) = 2/5 at t = (2/5) * Product_{n>=0} (1 - (2/5)^(4^n)) = 0.2338558995596128026623999920422960979429704653...
A(t) = 1/3 at t = (1/3) * Product_{n>=0} (1 - 1/3^(4^n)) = 0.2194787328986396432551386254242908520274591882...
A(t) = 1/4 at t = (1/4) * Product_{n>=0} (1 - 1/4^(4^n)) = 0.1867675780815147845714818686246871948236698894...
A(t) = 1/5 at t = (1/5) * Product_{n>=0} (1 - 1/5^(4^n)) = 0.1597439999989531017215999999999999999999999997...
A(1/5) = 0.2791419705799491640241970731636463821918278265598702481...
A(1/6) = 0.2119087418184569371633725749849800368394048924883176302...
A(1/7) = 0.1728682698948146927220680877897385568988140527227279611...
A(1/6)^4 = A(t) at t = (1/6)*A(1/6)^3/(1 - A(1/6)) = 0.0020124210815...
A(1/7)^4 = A(t) at t = (1/7)*A(1/7)^3/(1 - A(1/7)) = 0.0008922224261..
		

Crossrefs

Programs

  • PARI
    /* From Series_Reversion( x * Product_{n>=0} (1 - x^(4^n)) ) */
    {a(n) = my(A, M=ceil(log(n+1)/log(4))); A = serreverse( x * prod(m=0, M, 1 - x^(4^m)) + x*O(x^n) ); polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", "))
    
  • PARI
    /* From A(x)^4 = A( x*A(x)^3/(1 - A(x)) ) */
    {a(n) = my(A=[0, 1], F); for(i=1, n, A = concat(A, 0); F=Ser(A);
    A[#A] = polcoeff( subst(F, x, x*F^3/(1 - F) ) - F^4, #A+2) ); H=A; A[n+1]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^4 = A( x*A(x)^3/(1 - A(x)) ).
(2) A(x)^16 = A( x*A(x)^15/((1 - A(x))*(1 - A(x)^4)) ).
(3) A(x)^64 = A( x*A(x)^63/((1 - A(x))*(1 - A(x)^4)*(1 - A(x)^16)) ).
(4) A(x)^(4^n) = A( x*A(x)^(4^n-1)/Product_{k=0..n-1} (1 - A(x)^(4^k)) ) for n > 0.
(5) A(x) = x / Product_{n>=0} (1 - A(x)^(4^n)).
(6) A(x) = Series_Reversion( x * Product_{n>=0} (1 - x^(4^n)) ).
(7) x = A(x) * Sum_{n>=0} (-1)^A010060(n) * A(x)^A000695(n), where A010060 is the Thue-Morse sequence and A000695 gives sums of distinct powers of 4.
The radius of convergence r and A(r) satisfy 1 = Sum_{n>=0} 4^n * A(r)^(4^n)/(1 - A(r)^(4^n)) and r = A(r) * Product_{n>=0} (1 - A(r)^(4^n)), where r = 0.23735646078435954136834955920887956765296150123281028... and A(r) = 0.45218226260527732381925578383609182019094441327410056...