cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372542 Total number of modes in all partitions of n.

Original entry on oeis.org

0, 1, 2, 4, 6, 9, 16, 20, 30, 42, 61, 76, 112, 138, 189, 248, 325, 407, 539, 667, 865, 1083, 1369, 1690, 2140, 2624, 3268, 4009, 4954, 6022, 7417, 8968, 10946, 13218, 16023, 19256, 23264, 27819, 33415, 39873, 47682, 56654, 67527, 79962, 94909, 112130, 132578
Offset: 0

Views

Author

Alois P. Heinz, May 05 2024

Keywords

Comments

Each element of a partition with maximal multiplicity is a mode of this partition.

Examples

			a(5) = 9 = 1 + 2 + 2 + 1 + 1 + 1 + 1: 5, 32, 41, 221, 311, 2111, 11111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, t, `if`(i<1, 0, add(
          b(n-i*j, i-1, max(j, m), `if`(j>m, 1, `if`(j=m, t+1, t))), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0$2):
    seq(a(n), n=0..46);

Formula

a(n) = Sum_{k=0..A003056(n)} k * A362614(n,k).