A372542 Total number of modes in all partitions of n.
0, 1, 2, 4, 6, 9, 16, 20, 30, 42, 61, 76, 112, 138, 189, 248, 325, 407, 539, 667, 865, 1083, 1369, 1690, 2140, 2624, 3268, 4009, 4954, 6022, 7417, 8968, 10946, 13218, 16023, 19256, 23264, 27819, 33415, 39873, 47682, 56654, 67527, 79962, 94909, 112130, 132578
Offset: 0
Keywords
Examples
a(5) = 9 = 1 + 2 + 2 + 1 + 1 + 1 + 1: 5, 32, 41, 221, 311, 2111, 11111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
Programs
-
Maple
b:= proc(n, i, m, t) option remember; `if`(n=0, t, `if`(i<1, 0, add( b(n-i*j, i-1, max(j, m), `if`(j>m, 1, `if`(j=m, t+1, t))), j=0..n/i))) end: a:= n-> b(n$2, 0$2): seq(a(n), n=0..46);
Comments