A372556 a(n) = largest number k <= A130249(n) for which A372555(n-A001045(k)) = A372555(n)-1, where A372555(n) is the least number of Jacobsthal numbers that add up to n.
0, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..87381
Programs
-
PARI
up_to = 87381; \\ = A001045(18). A001045(n) = (2^n - (-1)^n) / 3; A130249(n) = (#binary(3*n+1)-1); A372555_or_556list(up_to_n,return_556_instead) = { my(v372555 = vector(up_to_n), v372556 = vector(up_to_n)); v372555[1] = 1; v372556[1] = 2; for(n=2,#v372556, my(m=-1,mk=-1,s=A130249(n)); if(A001045(s)==n, v372555[n] = 1; v372556[n] = s, forstep(k=s, 1, -1, my(c=v372555[n-A001045(k)]); if(m<0 || c
A001045(mk)])); if(return_556_instead,v372556,v372555); }; v372556 = A372555_or_556list(up_to,1); A372556(n) = if(!n,n,v372556[n]); -
Scheme
;; Use the program given in A372555.
Comments