cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372556 a(n) = largest number k <= A130249(n) for which A372555(n-A001045(k)) = A372555(n)-1, where A372555(n) is the least number of Jacobsthal numbers that add up to n.

Original entry on oeis.org

0, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0

Views

Author

Antti Karttunen, May 07 2024

Keywords

Comments

An auxiliary sequence for computing A372555 with a mutually recursive algorithm.
Differs from A130249 for the first time at n=63, 84, 191, 212, 255, etc. See A372558.
Conjecture: For all n, either a(n) = A130249(n) or a(n) = A130249(n)-1. In other words, there is always a minimal solution (in number of summands) for representing n as a sum of Jacobsthal numbers that its largest summand is either A001045(A130249(n)) [same as obtained with a greedy algorithm A265745], or the next smaller Jacobsthal number. - Antti Karttunen, May 10 2024

Crossrefs

Programs

  • PARI
    up_to = 87381; \\ = A001045(18).
    A001045(n) = (2^n - (-1)^n) / 3;
    A130249(n) = (#binary(3*n+1)-1);
    A372555_or_556list(up_to_n,return_556_instead) = { my(v372555 = vector(up_to_n), v372556 = vector(up_to_n)); v372555[1] = 1; v372556[1] = 2; for(n=2,#v372556, my(m=-1,mk=-1,s=A130249(n)); if(A001045(s)==n, v372555[n] = 1; v372556[n] = s, forstep(k=s, 1, -1, my(c=v372555[n-A001045(k)]); if(m<0 || cA001045(mk)])); if(return_556_instead,v372556,v372555); };
    v372556 = A372555_or_556list(up_to,1);
    A372556(n) = if(!n,n,v372556[n]);
    
  • Scheme
    ;; Use the program given in A372555.