cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372557 Numbers k such that the least number of Jacobsthal numbers that add up to k, A372555(k), is less than the number needed with the greedy algorithm, A265745(k).

Original entry on oeis.org

63, 84, 148, 169, 191, 212, 234, 255, 276, 297, 319, 340, 404, 425, 489, 510, 532, 553, 575, 596, 617, 638, 660, 681, 703, 724, 746, 767, 788, 809, 831, 852, 874, 895, 917, 937, 938, 959, 980, 1002, 1022, 1023, 1044, 1065, 1087, 1108, 1129, 1150, 1172, 1193, 1215, 1236, 1258, 1278, 1279, 1300, 1321, 1343, 1363, 1364, 1428
Offset: 1

Views

Author

Antti Karttunen, May 07 2024

Keywords

Examples

			63 = 21+21+21 has A372555(63)=3 for its optimal, non-greedy solution, and A265745(63) = 5 for its greedy solution 63 = 43+11+5+3+1, therefore 63 is included in this sequence. (From _Yuriko Suwa_'s Jul 11 2021 comment in A265745.)
84 = 21+21+21+21 has A372555(84)=4 for its optimal, non-greedy solution, and A265745(84) = 6 for its greedy solution 84 = 43+21+11+5+3+1, therefore 84 is included in this sequence.
169 = 85+21+21+21+21 has A372555(169)=5 for its optimal, non-greedy solution, and A265745(169) = 7 for its greedy solution 169 = 85+43+21+11+5+3+1, therefore 169 is included in this sequence.
		

Crossrefs

Cf. A372558 (subsequence).

Programs