A372587 Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is even.
6, 7, 10, 11, 13, 14, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 49, 50, 52, 56, 57, 58, 62, 69, 70, 72, 74, 75, 76, 77, 82, 83, 85, 86, 87, 88, 90, 92, 96, 98, 100, 102, 103, 104, 106, 107, 108, 109, 112, 117, 120, 123
Offset: 1
Keywords
Examples
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin: {2,3} 6 (2,1) {1,2,3} 7 (4) {2,4} 10 (3,1) {1,2,4} 11 (5) {1,3,4} 13 (6) {2,3,4} 14 (4,1) {2,5} 18 (2,2,1) {1,2,5} 19 (8) {2,3,5} 22 (5,1) {1,2,3,5} 23 (9) {4,5} 24 (2,1,1,1) {1,4,5} 25 (3,3) {2,4,5} 26 (6,1) {1,2,4,5} 27 (2,2,2) {3,4,5} 28 (4,1,1) {2,3,4,5} 30 (3,2,1) {1,2,3,4,5} 31 (11) {1,6} 33 (5,2) {2,6} 34 (7,1) {1,2,6} 35 (4,3) {1,3,6} 37 (12) {2,3,6} 38 (8,1)
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Select[Range[100],EvenQ[Total[bix[#]]+Total[prix[#]]]&]
Comments