cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372611 Expansion of (1 + 3*x) / ((1 - 2*x)*sqrt(1 - 4*x)).

Original entry on oeis.org

1, 7, 26, 90, 310, 1082, 3844, 13892, 50950, 189130, 708876, 2677452, 10175356, 38863780, 149045960, 573559240, 2213551430, 8563950250, 33203854460, 128978378620, 501839077460, 1955475615820, 7629823818680, 29805375256120, 116558646378140, 456270710243332
Offset: 0

Views

Author

Mélika Tebni, May 07 2024

Keywords

Comments

Conjecture: For p Pythagorean prime (A002144), a(p) - 7 == 0 (mod p).
Conjecture: For p prime of the form 4*k + 3 (A002145), a(p) + 3 == 0 (mod p).

Crossrefs

Programs

  • Maple
    a := n -> -2^(n-1)*5*I + binomial(2*n, n)*(1-5/2*hypergeom([1, n+1/2], [n+1], 2)): seq(simplify(a(n)), n = 0 .. 25);
  • PARI
    my(x='x+O('x^30)); Vec((1 + 3*x) / ((1 - 2*x)*sqrt(1 - 4*x))) \\ Michel Marcus, May 07 2024

Formula

a(n) = 6*A000984(n) - 5* A029759(n) = binomial(2*n,n) + 5*Sum_{k=0..n-1} 2^(n-k-1)*binomial(2*k,k).
a(n) = 2*a(n-1) + A028322(n) = 2*a(n-1) + binomial(2*n, n) + 3*binomial(2*n-2, n-1) for n >= 1.
a(n) = - 2^(n-1)*5*i + binomial(2*n,n)*(1-5/2*hypergeom([1, n + 1/2], [n + 1], 2)).
a(n) = 3*A082590(n-1) + A082590(n) for n >= 1.
a(n) = (7*A188622(n) - 4*A126966(n))/3.
a(n) = 2*A372239(n) - A372420(n).