A372649 Total sum over all partitions of [n] of the number of maximal blocks.
0, 1, 3, 7, 21, 71, 293, 1268, 6107, 31123, 170745, 998966, 6212627, 40854360, 283290348, 2059884614, 15667307457, 124266461587, 1025342179759, 8784261413616, 78003593175261, 716854898767936, 6808817431686858, 66754426111124686, 674754718441688851
Offset: 0
Keywords
Examples
a(3) = 7 = 3 + 1 + 1 + 1 + 1: 1|2|3, 1|23, 12|3, 13|2, 123. a(4) = 21 = 1+1+1+2+1+1+2+1+2+1+1+1+1+1+4: 1234, 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, m, t) option remember; `if`(n=0, t, add(binomial(n-1, j-1)*b(n-j, max(j, m), `if`(j>m, 1, `if`(j=m, t+1, t))), j=1..n)) end: a:= n-> b(n, 0$2): seq(a(n), n=0..24);
-
Mathematica
b[n_, m_, t_] := b[n, m, t] = If[n == 0, t, Sum[Binomial[n - 1, j - 1]*b[n - j, Max[j, m], If[j > m, 1, If[j == m, t + 1, t]]], {j, 1, n}]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, May 10 2024, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=0..n} k * A372722(n,k).