A372675 a(n) = Sum_{j=1..n} Sum_{k=1..n} sigma(j*k).
1, 14, 59, 190, 401, 914, 1499, 2632, 4113, 6424, 8645, 13284, 17023, 23092, 30715, 40484, 48711, 63890, 75351, 95792, 116421, 139822, 159911, 199176, 229499, 267438, 309283, 364462, 404933, 482792, 532553, 611208, 688593, 772540, 862471, 998760, 1083615, 1200328
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
- Vaclav Kotesovec, Plot of a(n)/n^4 for n = 1..100000
Crossrefs
Programs
-
Mathematica
Table[Sum[DivisorSigma[1, j*k], {j, 1, n}, {k, 1, n}], {n, 1, 50}] s = 1; Join[{1}, Table[s += DivisorSigma[1, n^2] + 2*Sum[DivisorSigma[1, j*n], {j, 1, n - 1}], {n, 2, 50}]]
Formula
a(n) ~ c * n^4, where c = Pi^4 / (144*zeta(3)) = 0.56274...
Comments