A372687 Number of prime numbers whose binary indices sum to n. Number of strict integer partitions y of n such that Sum_i 2^(y_i-1) is prime.
0, 0, 1, 1, 1, 0, 2, 1, 2, 0, 3, 3, 1, 4, 1, 6, 5, 8, 4, 12, 8, 12, 7, 20, 8, 16, 17, 27, 19, 38, 19, 46, 33, 38, 49, 65, 47, 67, 83, 92, 94, 113, 103, 130, 146, 127, 215, 224, 176, 234, 306, 270, 357, 383, 339, 393, 537, 540, 597, 683, 576, 798, 1026, 830, 1157
Offset: 0
Keywords
Examples
The a(2) = 1 through a(17) = 8 prime numbers: 2 3 5 . 17 11 19 . 257 131 73 137 97 521 4099 1031 7 13 67 41 71 263 2053 523 37 23 43 139 1033 269 29 83 193 163 53 47 149 31 101 89 79 The a(2) = 1 through a(11) = 3 strict partitions: (2) (2,1) (3,1) . (5,1) (4,2,1) (4,3,1) . (9,1) (6,4,1) (3,2,1) (5,2,1) (6,3,1) (8,2,1) (7,2,1) (5,3,2,1)
Crossrefs
For all positive integers (not just prime) we get A000009.
Number of prime numbers p with A029931(p) = n.
Number of times n appears in A372429.
Number of rows of A372471 with sum n.
These (strict) partitions have Heinz numbers A372851.
A014499 lists binary indices of prime numbers.
A048793 lists binary indices:
- length A000120
- min A001511
- sum A029931
- max A070939
- reverse A272020
A096111 gives product of binary indices.
A372689 lists numbers whose binary indices sum to a prime.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&PrimeQ[Total[2^#]/2]&]],{n,0,30}]
Comments