cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372697 Index k such that A280866(k) = A019565(n) or 0 if A019565(n) does not appear in A280866.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 17, 26, 11, 12, 20, 37, 36, 67, 68, 205, 14, 15, 46, 63, 74, 90, 127, 302, 73, 145, 146, 373, 307, 736, 1101, 2126, 23, 22, 47, 76, 75, 121, 122, 364, 78, 176, 177, 510, 343, 842, 1229, 2607, 180, 275, 276, 826, 553, 1387, 1388, 4088, 827, 1878
Offset: 0

Views

Author

Michael De Vlieger, Jul 29 2024

Keywords

Comments

Offset matches A019565.
Conjecture: there are no zeros in this sequence, which is equivalent to the conjecture that A280866 is a permutation of natural numbers.

Examples

			Let s = A019565 and let t = A280866.
a(0) = 1 since s(0) = 1 = t(1).
a(1) = 2 since s(1) = 2 = t(2).
a(2) = 4 since s(2) = 3 = t(4).
a(3) = 5 since s(3) = 5 = t(5).
Table relating this sequence to s and t. The last column shows Y if s(n) is divisible by the prime in the heading, otherwise ".":
   n   s(n)  a(n)   2357
  ----------------------
   0     1     1    .
   1     2     2    Y
   2     3     4    .Y
   3     6     5    YY
   4     5     7    ..Y
   5    10     8    Y.Y
   6    15    17    .YY
   7    30    26    YYY
   8     7    11    ...Y
   9    14    12    Y..Y
  10    21    20    .Y.Y
  11    42    37    YY.Y
  12    35    36    .YYY
  13    70    67    Y.YY
  14   105    68    .YYY
  15   210   205    YYYY
  ...
		

Crossrefs

Programs

  • Mathematica
    nn = 2^14; c[] := False; m[] := 1;
    i = 1; j = m[1] = m[2] = 2; c[1] = c[2] = True;
    f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]];
    s = Association[
      Monitor[Reap[
         Do[While[c[Set[k, #   m[#]]], m[#]++] &[f[i * j]/f[i]];
          If[SquareFreeQ[k],
            Sow[Total[2^(-1 + PrimePi[FactorInteger[k][[All, 1]]])] -> n] ];
          Set[{c[k], i, j}, {True, j, k}], {n, 3, nn}] ][[-1, 1]], n]];
    TakeWhile[{1, 2}~Join~Array[If[KeyExistsQ[s, #], Lookup[s, #], 0] &, Floor@ Sqrt[nn], 2], # > 0 &]