A372697 Index k such that A280866(k) = A019565(n) or 0 if A019565(n) does not appear in A280866.
1, 2, 4, 5, 7, 8, 17, 26, 11, 12, 20, 37, 36, 67, 68, 205, 14, 15, 46, 63, 74, 90, 127, 302, 73, 145, 146, 373, 307, 736, 1101, 2126, 23, 22, 47, 76, 75, 121, 122, 364, 78, 176, 177, 510, 343, 842, 1229, 2607, 180, 275, 276, 826, 553, 1387, 1388, 4088, 827, 1878
Offset: 0
Keywords
Examples
Let s = A019565 and let t = A280866. a(0) = 1 since s(0) = 1 = t(1). a(1) = 2 since s(1) = 2 = t(2). a(2) = 4 since s(2) = 3 = t(4). a(3) = 5 since s(3) = 5 = t(5). Table relating this sequence to s and t. The last column shows Y if s(n) is divisible by the prime in the heading, otherwise ".": n s(n) a(n) 2357 ---------------------- 0 1 1 . 1 2 2 Y 2 3 4 .Y 3 6 5 YY 4 5 7 ..Y 5 10 8 Y.Y 6 15 17 .YY 7 30 26 YYY 8 7 11 ...Y 9 14 12 Y..Y 10 21 20 .Y.Y 11 42 37 YY.Y 12 35 36 .YYY 13 70 67 Y.YY 14 105 68 .YYY 15 210 205 YYYY ...
Links
- Michael De Vlieger, Fan style binary tree showing a(n), n = 0..2047, with a color code associated with log(a(n))/log(2) for a(n) <= 4194304. Terms that are either 0 or greater than 4194304 appear blank.
Programs
-
Mathematica
nn = 2^14; c[] := False; m[] := 1; i = 1; j = m[1] = m[2] = 2; c[1] = c[2] = True; f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]]; s = Association[ Monitor[Reap[ Do[While[c[Set[k, # m[#]]], m[#]++] &[f[i * j]/f[i]]; If[SquareFreeQ[k], Sow[Total[2^(-1 + PrimePi[FactorInteger[k][[All, 1]]])] -> n] ]; Set[{c[k], i, j}, {True, j, k}], {n, 3, nn}] ][[-1, 1]], n]]; TakeWhile[{1, 2}~Join~Array[If[KeyExistsQ[s, #], Lookup[s, #], 0] &, Floor@ Sqrt[nn], 2], # > 0 &]
Comments