cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372713 Number of divisors of 3n; a(n) = tau(3*n) = A000005(3*n).

Original entry on oeis.org

2, 4, 3, 6, 4, 6, 4, 8, 4, 8, 4, 9, 4, 8, 6, 10, 4, 8, 4, 12, 6, 8, 4, 12, 6, 8, 5, 12, 4, 12, 4, 12, 6, 8, 8, 12, 4, 8, 6, 16, 4, 12, 4, 12, 8, 8, 4, 15, 6, 12, 6, 12, 4, 10, 8, 16, 6, 8, 4, 18, 4, 8, 8, 14, 8, 12, 4, 12, 6, 16, 4, 16, 4, 8, 9, 12, 8, 12, 4, 20
Offset: 1

Views

Author

Vaclav Kotesovec, May 11 2024

Keywords

Comments

In general, for p prime, Sum_{j=1..n} tau(j*p) ~ (2*p - 1) * n * (log(n) - 1 + 2*gamma)/p + n*log(p)/p, where gamma is the Euler-Mascheroni constant A001620.
If n is in A033428, then a(n) is odd and vice versa. - R. J. Mathar, Amiram Eldar, May 20 2024.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 3*n], {n, 1, 150}]
  • PARI
    a(n) = numdiv(3*n); \\ Michel Marcus, May 20 2024

Formula

Sum_{k=1..n} a(k) ~ n * (5*(log(n) + 2*gamma - 1) + log(3)) / 3, where gamma is the Euler-Mascheroni constant A001620.