A372772 a(n) is the number of divisors d of n such that d^n mod n = k, where k is also a divisor of n.
0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 4, 1, 1, 2, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 5, 1, 3, 2, 2, 1, 4, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 3, 4, 1, 2, 2, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 5, 1, 2, 1, 4, 2, 2, 2, 1, 1, 5, 2, 1, 2, 2, 2, 1, 1, 3, 1, 3
Offset: 1
Keywords
Examples
a(12) = 3: 1 divides 12, and 1^12 mod 12 = 1; 2 divides 12, and 2^12 mod 12 = 4; 3 divides 12, but 3^12 mod 12 = 9 (not a divisor of 12); 4 divides 12, and 4^12 mod 12 = 4; 6 divides 12, but 6^12 mod 12 = 0 (not a divisor of 12); 12 divides 12, but 12^12 mod 12 = 0 (not a divisor of 12).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
Cf. A371883.
Programs
-
Magma
[&+[#[d: d in Divisors(n) | d^n mod n eq k and n mod k eq 0]: k in [1..n]]: n in [1..100]];
-
Mathematica
a[n_] := DivisorSum[n, 1 &, (m = PowerMod[#, n, n]) > 0 && Divisible[n, m] &]; Array[a, 100] (* Amiram Eldar, May 13 2024 *)
-
PARI
A372772(n) = { my(k); sumdiv(n, d, k=lift(Mod(d^n,n)); k > 0 && 0==(n%k)); }; \\ Antti Karttunen, May 13 2024
-
Python
from sympy import divisors def a(n): divs = set(divisors(n)[:-1]) return sum(1 for d in divs if pow(d, n, n) in divs) print([a(n) for n in range(1, 101)]) # Michael S. Branicky, May 13 2024