A372765 Decimal expansion of Lichtman constant f(N(2)).
1, 1, 4, 4, 8, 1, 6, 5, 7, 3, 4, 0, 5, 9, 1, 7, 9, 9, 1, 5, 2, 4, 4, 5, 0, 1, 7, 3, 8, 9, 3, 3, 4, 1, 0, 7, 9, 1, 3, 1, 3, 0, 4, 9, 7, 4, 0, 1, 7, 4, 3, 6, 7, 3, 9, 1, 1, 9, 8, 9, 7, 6, 7, 3, 1, 7, 3, 0, 4, 9, 8, 7, 5, 5, 6, 8, 3, 2, 1, 1, 7, 6, 4, 9, 1, 8, 8, 2, 0, 6, 7, 5, 1, 7, 2, 3, 8, 7, 8, 8, 0, 7, 1, 1, 6
Offset: 1
Examples
1.1448165734059179915...
Links
- Bill Allombert, Results of pari computation of Lichtman constants f(N(k)) with precision 500 decimals for k=1..20, email 20.06.2023
- Jared Duker Lichtman, Almost primes and the Banks-Martin conjecture, arXiv:1909.00804 [math.NT], 2019 (Figure 2 left column).
Crossrefs
Programs
-
PARI
pz(x)= sum(n=1, max(2, bitprecision(x)/x), my(a=moebius(n)); if(a!=0, a*log(zeta(n*x))/n)); Lichtman(n)=intnum(s=1, [oo, log(2)], exp(sum(i=1, n, pz(i*s)*x^i/i)+O(x^(n+1)))-1) Lichtman(20) \\ Bill Allombert, May 14 2024 [via Artur Jasinski]
Comments