A372879 Irregular triangle read by rows: T(n,k) is the number of flattened Catalan words of length n with exactly k short peak, with k >= 0.
1, 2, 4, 1, 9, 5, 22, 18, 1, 56, 58, 8, 145, 178, 41, 1, 378, 532, 173, 11, 988, 1563, 656, 73, 1, 2585, 4535, 2327, 381, 14, 6766, 13030, 7888, 1726, 114, 1, 17712, 37140, 25872, 7124, 709, 17, 46369, 105156, 82758, 27534, 3739, 164, 1, 121394, 296040, 259542, 101350, 17632, 1184, 20
Offset: 1
Examples
The irregular triangle begins: 1; 2; 4, 1; 9, 5; 22, 18, 1; 56, 58, 8; 145, 178, 41, 1; 378, 532, 173, 11; 988, 1563, 656, 73, 1; ... T(6,2) = 8 since there are 8 flattened Catalan words of length 6 with 2 short peaks: 001010, 010100, 010101, 010010, 010120, 010121, 012010, and 012121.
Links
- Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See pp. 19-20.
Programs
-
Mathematica
T[n_,k_]:=SeriesCoefficient[x(1-2x)/((1-x)(1-3x+x^2(1-y))),{x,0,n},{y,0,k}]; Table[T[n,k],{n,14},{k,0,Floor[(n-1)/2]}]//Flatten