A372885 Prime numbers whose binary indices (positions of ones in reversed binary expansion) sum to another prime number.
2, 3, 11, 23, 29, 41, 43, 61, 71, 79, 89, 101, 103, 113, 131, 137, 149, 151, 163, 181, 191, 197, 211, 239, 269, 271, 281, 293, 307, 331, 349, 353, 373, 383, 401, 433, 457, 491, 503, 509, 523, 541, 547, 593, 641, 683, 701, 709, 743, 751, 761, 773, 827, 863, 887
Offset: 1
Examples
The binary indices of 89 are {1,4,5,7}, with sum 17, which is prime, so 89 is in the sequence. The terms together with their binary expansions and binary indices begin: 2: 10 ~ {2} 3: 11 ~ {1,2} 11: 1011 ~ {1,2,4} 23: 10111 ~ {1,2,3,5} 29: 11101 ~ {1,3,4,5} 41: 101001 ~ {1,4,6} 43: 101011 ~ {1,2,4,6} 61: 111101 ~ {1,3,4,5,6} 71: 1000111 ~ {1,2,3,7} 79: 1001111 ~ {1,2,3,4,7} 89: 1011001 ~ {1,4,5,7} 101: 1100101 ~ {1,3,6,7} 103: 1100111 ~ {1,2,3,6,7} 113: 1110001 ~ {1,5,6,7} 131: 10000011 ~ {1,2,8} 137: 10001001 ~ {1,4,8} 149: 10010101 ~ {1,3,5,8} 151: 10010111 ~ {1,2,3,5,8} 163: 10100011 ~ {1,2,6,8} 181: 10110101 ~ {1,3,5,6,8} 191: 10111111 ~ {1,2,3,4,5,6,8} 197: 11000101 ~ {1,3,7,8}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= proc(p) local L,i,t; L:= convert(p,base,2); isprime(add(i*L[i],i=1..nops(L))) end proc: select(filter, [seq(ithprime(i),i=1..200)]); # Robert Israel, Jun 19 2025
-
Mathematica
Select[Range[100],PrimeQ[#] && PrimeQ[Total[First/@Position[Reverse[IntegerDigits[#,2]],1]]]&]
Comments