A372889 Greatest squarefree number <= 2^n.
1, 2, 3, 7, 15, 31, 62, 127, 255, 511, 1023, 2047, 4094, 8191, 16383, 32767, 65535, 131071, 262142, 524287, 1048574, 2097149, 4194303, 8388607, 16777214, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741822, 2147483647, 4294967295, 8589934591
Offset: 0
Keywords
Examples
The terms together with their binary expansions and binary indices begin: 1: 1 ~ {1} 2: 10 ~ {2} 3: 11 ~ {1,2} 7: 111 ~ {1,2,3} 15: 1111 ~ {1,2,3,4} 31: 11111 ~ {1,2,3,4,5} 62: 111110 ~ {2,3,4,5,6} 127: 1111111 ~ {1,2,3,4,5,6,7} 255: 11111111 ~ {1,2,3,4,5,6,7,8} 511: 111111111 ~ {1,2,3,4,5,6,7,8,9} 1023: 1111111111 ~ {1,2,3,4,5,6,7,8,9,10} 2047: 11111111111 ~ {1,2,3,4,5,6,7,8,9,10,11} 4094: 111111111110 ~ {2,3,4,5,6,7,8,9,10,11,12} 8191: 1111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13} 16383: 11111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14} 32767: 111111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}
Crossrefs
Programs
-
Mathematica
Table[NestWhile[#-1&,2^n,!SquareFreeQ[#]&],{n,0,15}]
-
PARI
a(n) = my(k=2^n); while (!issquarefree(k), k--); k; \\ Michel Marcus, May 29 2024
Formula
a(n) = A070321(2^n). - R. J. Mathar, May 31 2024