cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372894 A positive integer 2^k*m, where m is odd and k >= 0, belongs to this sequence iff the Jacobi symbol (F_n/m) = -1 for only a finite number of Fermat numbers F_n = A000215(n).

Original entry on oeis.org

1, 2, 4, 8, 9, 13, 15, 16, 17, 18, 21, 25, 26, 30, 32, 34, 35, 36, 42, 49, 50, 52, 60, 64, 68, 70, 72, 81, 84, 97, 98, 100, 104, 117, 120, 121, 123, 128, 135, 136, 140, 144, 153, 162, 168, 169, 189, 193, 194, 195, 196, 200, 205, 208, 221, 225, 234, 240, 241, 242, 246, 255, 256, 257, 270, 272, 273, 280, 287, 288, 289
Offset: 1

Views

Author

Jianing Song, May 15 2024

Keywords

Comments

Can be seen as the opposite of A129802.
Let m be an odd number and ord(2,m) = 2^r*d be the multiplicative order of 2 modulo m, where d is odd, then 2^2^n + 1 is congruent to one of 2^2^r + 1, 2^2^(r+1) + 1, ..., 2^2^(r+ord(2,d)-1) + 1 modulo m, so it suffices to check these ord(2,d) numbers.
Note that if m > 1, then m does not divide 2^2^n + 1 for n >= r, otherwise we would have 2^(2^n*d) = (2^ord(2,m))^2^(n-r) == 1 (mod m) and 2^(2^n*d) = (2^2^n)^d == (-1)^d == -1 (mod m). As a result, m is a term if and only if the Jacobi symbol ((2^2^n + 1)/m) is equal to 1 for m = r, r+1, ..., r+ord(2,d)-1.
By definition, a squarefree number that is a product of elite primes (A102742) or anti-elite primes (A128852) is a term if and only if its number of elite factors is even. But a squarefree term can have factors that are neither elite nor anti-elite, the smallest being 341 = 11*31.
Contains divisors of Fermat numbers >= 17 (A307843 \ {3,5}) since they are products of elite primes.

Examples

			For n >= 1, we have 2^2^n + 1 == 65, 5, 17, 257 (mod 341) respectively for n == 0, 1, 2, 3 (mod 4). As we have (65/341) = (5/341) = (17/341) = (257/341) = 1, 341 is a term.
		

Crossrefs

Prime elements of this sequence are given by A128852.

Programs

  • PARI
    isA372894(n) = n = (n >> valuation(n,2)); my(d = znorder(Mod(2, n)), StartPoint = valuation(d, 2), LengthTest = znorder(Mod(2, d >> StartPoint))); for(i = StartPoint, StartPoint + LengthTest - 1, if(kronecker(lift(Mod(2, n)^2^i + 1), n) == -1, return(0))); 1