cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372903 Numbers k that divide the k-th little Schroeder number.

Original entry on oeis.org

1, 33, 2295, 5439, 6699, 7095, 7497, 7595, 10241, 11475, 15345, 19845, 24651, 25245, 35845, 37725, 37791, 49203, 50463, 51183, 51471, 60291, 62073, 64337, 65569, 66495, 68313, 78793, 80223, 81809, 86031, 98167, 100659, 103293, 109395, 115245, 119067, 119919, 142137
Offset: 1

Views

Author

Amiram Eldar, May 16 2024

Keywords

Comments

Numbers k such that k | A001003(k).

Examples

			1 is a term since A001003(1) = 2 is divisible by 1.
33 is a term since A001003(33) = 37836272668898230450209 = 33 * 1146553717239340316673 is divisible by 33.
		

Crossrefs

Cf. A001003.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    seq[kmax_] := Module[{sc0 = 1, sc1 = 1, sc2, s = {1}}, Do[sc2 = ((6*k-3)*sc1 - (k-2)*sc0)/(k+1); If[Divisible[sc2, k], AppendTo[s, k]]; sc0 = sc1; sc1 = sc2, {k, 2, kmax}]; s]; seq[10^5]
  • PARI
    lista(kmax) = {my(sc0 = 1, sc1 = 1, sc2); print1(1, ", "); for(k = 2, kmax, sc2 = ((6*k-3)*sc1 - (k-2)*sc0)/(k+1); if(!(sc2 % k), print1(k, ", ")); sc0 = sc1; sc1 = sc2);}