cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372921 Triangle read by rows: T(n, k) = (Sum_{i=0..n-k} (-1)^i * binomial(n-k, i) * A007559(n-i)) * n! / ((n-k)! * A007559(k)) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 3, 6, 2, 18, 63, 36, 6, 189, 828, 684, 216, 24, 2484, 13365, 14400, 6660, 1440, 120, 40095, 255474, 339390, 206280, 65880, 10800, 720, 766422, 5645619, 8915508, 6707610, 2827440, 687960, 90720, 5040, 16936857, 141626232, 259137144, 232306704, 121519440, 39130560, 7680960, 846720, 40320
Offset: 0

Views

Author

Werner Schulte, May 16 2024

Keywords

Examples

			Triangle T(n, k) starts:
n\k :       0        1        2        3        4       5      6     7
======================================================================
  0 :       1
  1 :       0        1
  2 :       3        6        2
  3 :      18       63       36        6
  4 :     189      828      684      216       24
  5 :    2484    13365    14400     6660     1440     120
  6 :   40095   255474   339390   206280    65880   10800    720
  7 :  766422  5645619  8915508  6707610  2827440  687960  90720  5040
  etc.
		

Crossrefs

Cf. A007559, A033030 (column 0), A000142 (main diagonal).

Programs

  • Mathematica
    T[n_,k_]:=n!SeriesCoefficient[Exp[-t]/ (1-3*t)^(1/3) * (t / (1-3*t))^k,{t,0,n}]; Table[T[n,k],{n,0,8},{k,0,n}]//Flatten (* Stefano Spezia, May 18 2024 *)
  • PARI
    T(n, k) = { sum(i=0, n-k, (-1)^i * binomial(n-k, i) * prod(j=1, n-i, 3*j-2)) * n! / ((n-k)! * prod(m=1, k, 3*m-2)) }

Formula

T(n, k) = (T(n-1, k-1) + 3 * T(n-1, k)) * n for 0 < k < n with initial values T(n, 0) = A033030(n) and T(n, n) = A000142(n).
E.g.f. of column k: exp(-t) / (1-3*t)^(1/3) * (t / (1-3*t))^k.
E.g.f.: exp(x*t / (1-3*t) - t) / (1-3*t)^(1/3).