cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372941 Numbers k that divide the k-th Domb number.

Original entry on oeis.org

1, 2, 4, 14, 28, 112, 133, 176, 224, 368, 388, 448, 616, 704, 784, 896, 1216, 1568, 1792, 3563, 4256, 5144, 6272, 8624, 8924, 9856, 11264, 11776, 13927, 16702, 23408, 32936, 38509, 42238, 43456, 43652, 43904, 46424, 67328, 73784, 76912, 78848, 81466, 110614, 118256
Offset: 1

Views

Author

Amiram Eldar, May 17 2024

Keywords

Comments

Numbers k such that k | A002895(k).

Examples

			2 is a term since A002895(2) = 28 = 2 * 14 is divisible by 2.
4 is a term since A002895(4) = 2716 = 4 * 679 is divisible by 4.
		

Crossrefs

Cf. A002895.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    seq[kmax_] := Module[{d0 = 1, d1 = 4, d2, s = {1}}, Do[d2 = ((20*k^3 - 30*k^2 + 18*k - 4)*d1 - 64*(k-1)^3*d0)/k^3; If[Divisible[d2, k], AppendTo[s, k]]; d0 = d1; d1 = d2, {k, 2, kmax}]; s]; seq[5000]
  • PARI
    lista(kmax) = {my(d0 = 1, d1 = 4, d2); print1("1, "); for(k = 2, kmax, d2 = ((20*k^3 - 30*k^2 + 18*k - 4)*d1 - 64*(k-1)^3*d0)/k^3; if(!(d2 % k), print1(k, ", ")); d0 = d1; d1 = d2);}