A372962
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} ( n/gcd(x_1, x_2, x_3, n) )^2.
Original entry on oeis.org
1, 29, 235, 925, 3101, 6815, 16759, 29597, 57097, 89929, 160931, 217375, 371125, 486011, 728735, 947101, 1419569, 1655813, 2475739, 2868425, 3938365, 4666999, 6435815, 6955295, 9690601, 10762625, 13874563, 15502075, 20510309, 21133315, 28628191, 30307229, 37818785
Offset: 1
-
f[p_, e_] := (p^(5*e+5) - p^(5*e+2) + p^2 - 1)/(p^5-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
-
a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^2*sigma(d, 5));
A371491
a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} ( n/gcd(x_1, x_2, x_3, x_4, x_5, n) )^3.
Original entry on oeis.org
1, 249, 6535, 63737, 390501, 1627215, 5764459, 16316665, 42876109, 97234749, 214357551, 416521295, 815728525, 1435350291, 2551924035, 4177066233, 6975752529, 10676151141, 16983556183, 24889362237, 37670739565, 53375030199, 78310973115, 106629405775
Offset: 1
-
f[p_, e_] := (p^(8*e + 8) - p^(8*e + 3) + p^3 - 1)/(p^8 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 24] (* Amiram Eldar, May 24 2024 *)
-
a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^3*sigma(d, 8));
-
a(n) = sumdiv(n,d, eulerphi(n/d)*(n/d)^3*sigma(d^2, 8)/sigma(d^2, 4));
A372968
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{1 <= x_1, x_2, ..., x_k <= n} n/gcd(x_1, x_2, ..., x_k, n).
Original entry on oeis.org
1, 1, 3, 1, 7, 7, 1, 15, 25, 11, 1, 31, 79, 55, 21, 1, 63, 241, 239, 121, 21, 1, 127, 727, 991, 621, 175, 43, 1, 255, 2185, 4031, 3121, 1185, 337, 43, 1, 511, 6559, 16255, 15621, 7471, 2395, 439, 61, 1, 1023, 19681, 65279, 78121, 45801, 16801, 3823, 673, 63
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, ...
3, 7, 15, 31, 63, 127, ...
7, 25, 79, 241, 727, 2185, ...
11, 55, 239, 991, 4031, 16255, ...
21, 121, 621, 3121, 15621, 78121, ...
21, 175, 1185, 7471, 45801, 277495, ...
-
f[p_, e_, k_] := (p^((k + 1)*e + k + 1) - p^((k + 1)*e + 1) + p - 1)/(p^(k + 1) - 1); T[1, k_] := 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[k, n - k + 1], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 25 2024 *)
-
T(n, k) = sumdiv(n, d, moebius(n/d)*n/d*sigma(d, k+1));
A371492
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} ( gcd(x_1, n)/gcd(x_1, x_2, x_3, n) )^2.
Original entry on oeis.org
1, 17, 91, 289, 701, 1547, 2647, 4769, 7705, 11917, 15731, 26299, 30421, 44999, 63791, 77473, 87857, 130985, 136459, 202589, 240877, 267427, 290951, 433979, 448201, 517157, 633187, 764983, 729989, 1084447, 951391, 1248929, 1431521, 1493569, 1855547, 2226745
Offset: 1
-
f[p_, e_] := (p^(4*e+1)*(p+1)*(p^2+p+1) - p^(3*e+1)*(p^2+1) + p + 1)/((p^2+1)*(p^2+p+1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 36] (* Amiram Eldar, May 24 2024 *)
-
a(n) = sumdiv(n, d, eulerphi(n/d)*(n/d)^2*sigma(d^2, 4)/sigma(d^2, 2));
A373060
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} gcd(x_1, n)/gcd(x_1, x_2, x_3, n).
Original entry on oeis.org
1, 11, 43, 115, 221, 473, 631, 1139, 1609, 2431, 2531, 4945, 4213, 6941, 9503, 10867, 9521, 17699, 13339, 25415, 27133, 27841, 23783, 48977, 39721, 46343, 55555, 72565, 47909, 104533, 58591, 100979, 108833, 104731, 139451, 185035, 99901, 146729, 181159, 251719
Offset: 1
-
a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, gcd(i, n)/gcd([i, j, k, n]))));
A373130
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} sigma( n/gcd(x_1, x_2, x_3, n) ).
Original entry on oeis.org
1, 22, 105, 414, 745, 2310, 2737, 7134, 9231, 16390, 15961, 43470, 30745, 60214, 78225, 118238, 88417, 203082, 137161, 308430, 287385, 351142, 291985, 749070, 481245, 676390, 767391, 1133118, 731641, 1720950, 953281, 1924574, 1675905, 1945174, 2039065, 3821634
Offset: 1
-
f[p_, e_] := (p^(4*e+2)*(p^2+p+1) - p^(3*e)*(p^3+p^2+p+1) + p)/(p^4-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 26 2024 *)
-
J(n, k) = sumdiv(n, d, d^k*moebius(n/d));
a(n, k=3, m=1) = sumdiv(n, d, J(d, k)*sigma(d^m));
A373061
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} gcd(x_1, x_2, n)/gcd(x_1, x_2, x_3, n).
Original entry on oeis.org
1, 9, 31, 77, 141, 279, 379, 637, 877, 1269, 1431, 2387, 2341, 3411, 4371, 5181, 5169, 7893, 7183, 10857, 11749, 12879, 12651, 19747, 18041, 21069, 24043, 29183, 25173, 39339, 30691, 41789, 44361, 46521, 53439, 67529, 51949, 64647, 72571, 89817, 70521, 105741
Offset: 1
-
f[p_, e_] := (p^(3*e)*(p+1)^3 - p^(2*e)*(p^2+p+1) + 1)/((p^2+p+1)*(p+1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 31 2024 *)
-
a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, gcd([i, j, n])/gcd([i, j, k, n]))));
Showing 1-7 of 7 results.