A372973 Triangle read by rows: the exponential almost-Riordan array ( 1/(1-x) | 1/(1-x), log(1/(1-x)) ).
1, 1, 1, 2, 1, 1, 6, 2, 3, 1, 24, 6, 11, 6, 1, 120, 24, 50, 35, 10, 1, 720, 120, 274, 225, 85, 15, 1, 5040, 720, 1764, 1624, 735, 175, 21, 1, 40320, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 362880, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1
Offset: 0
Examples
The triangle begins: 1; 1, 1; 2, 1, 1; 6, 2, 3, 1; 24, 6, 11, 6, 1; 120, 24, 50, 35, 10, 1; 720, 120, 274, 225, 85, 15, 1; ...
Links
- Y. Alp and E. G. Kocer, Exponential Almost-Riordan Arrays, Results Math 79, 173 (2024). See page 6.
Crossrefs
Programs
-
Mathematica
T[n_,0]:=n!; T[n_,k_]:=(n-1)!/(k-1)!SeriesCoefficient[1/(1-x)Log[1/(1-x)]^(k-1),{x,0,n-1}]; Table[T[n,k],{n,0,9},{k,0,n}]//Flatten
Formula
T(n,0) = n!; T(n,k) = (n-1)!/(k-1)! * [x^(n-1)] log(1/(1-x))^(k-1)/(1-x).
T(n,1) = (n-1)! for n > 0.
T(n,2) = A000254(n-1) for n > 1.