A373012 Number of distinct partitions p of n such that max(p) == 1 mod 3.
0, 1, 0, 0, 1, 1, 1, 3, 2, 2, 4, 3, 4, 7, 7, 8, 12, 13, 15, 20, 21, 24, 31, 34, 39, 49, 54, 62, 76, 84, 97, 116, 130, 148, 174, 195, 221, 257, 287, 325, 374, 419, 472, 540, 604, 679, 772, 861, 966, 1092, 1218, 1362, 1533, 1706, 1903, 2133, 2368, 2635, 2943, 3263, 3622, 4033, 4463
Offset: 0
Keywords
Examples
a(7) = 3 counts these partitions: 7, 43, 421.
Programs
-
PARI
my(N=70, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, x^(3*k+1)*prod(j=1, 3*k, 1+x^j))))