A373015 Number of partitions p of n such that max(p) == 2 mod 3.
0, 0, 1, 1, 2, 3, 4, 5, 8, 10, 14, 19, 25, 33, 45, 58, 76, 99, 127, 162, 209, 263, 333, 419, 524, 652, 813, 1003, 1239, 1524, 1868, 2281, 2786, 3382, 4104, 4965, 5993, 7213, 8676, 10396, 12447, 14866, 17725, 21087, 25063, 29711, 35185, 41589, 49089, 57839, 68079
Offset: 0
Keywords
Examples
a(8) = 8 counts these partitions: 8, 53, 521, 5111, 2222, 22211, 221111, 2111111.
Programs
-
PARI
my(N=60, x='x+O('x^N)); concat([0, 0], Vec(sum(k=0, N, x^(3*k+2)/prod(j=1, 3*k+2, 1-x^j))))