cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373021 Decimal expansion of Sum_{k>=0} sin(k*Pi/5)/2^k.

Original entry on oeis.org

6, 6, 6, 4, 4, 8, 8, 7, 0, 8, 1, 2, 3, 1, 3, 9, 1, 4, 8, 6, 1, 6, 3, 5, 7, 3, 2, 8, 5, 0, 1, 7, 8, 6, 5, 3, 2, 0, 0, 7, 9, 1, 7, 4, 2, 0, 3, 2, 8, 9, 7, 8, 9, 4, 2, 0, 2, 0, 7, 7, 9, 5, 1, 1, 1, 4, 9, 3, 4, 8, 6, 5, 9, 3, 7, 7, 1, 6, 8, 8, 6, 5, 3, 8, 7, 4
Offset: 0

Views

Author

Clark Kimberling, Jun 09 2024

Keywords

Comments

Guide to related sequences:
sequence summand approximation minimal polynomial
(a(n)) sin(k*Pi/5)/2^k 0.6664488708 5 - 65*x^2 + 121*x^4
A373022 sin(2*k*Pi/5)/2^k 0.5053526528 5 - 265*x^2 + 961*x^4
A373023 sin(3*k*Pi/5)/2^k 0.3050180080 5 - 65*x^2 + 121*x^4
A373024 sin(4*k*Pi/5)/2^k 0.1427344344 5 - 265*x^2 + 961*x^4
A373025 cos(k*Pi/5)/2^k 1.3503729060 11 - 23*x + 11*x^2
A373026 cos(2*k*Pi/5)/2^k 0.8985194182 19 - 49*x + 31*x^2
A373027 cos(3*k*Pi/5)/2^k 0.7405361848 11 - 23*x + 11*x^2
A373028 cos(4*k*Pi/5)/2^k 0.6821257430 19 - 49*x + 31*x^2

Examples

			0.666448870812313914861635732850178653200791742032...
		

Crossrefs

Programs

  • Mathematica
    {b, m, h} = {2, 5, 1}; s = Sum[Sin[ h  k  Pi/m]/b^k, {k, 0, Infinity}]
    d = N[s, 100]
    First[RealDigits[d], 100]

Formula

Equals sqrt(10 - 2*sqrt(5)) / (8 - 2*sqrt(5)).
Equals (-1)*Sum_{k>=0} sin(9*k*Pi/5)/2^k.
Peter J. C. Moses (May 22 2024) found the following generalized summation identities for the eight sequences in Comments and many other sequences:
Sum_{k>=0} sin(h*k + Pi/m)/b^(k+r) = b^(1-r)*(b*sin(Pi/m) + sin(h - Pi/m)/(1 + b^2 - 2*b*cos*(Pi/m)).
Sum_{k>=0} cos(h*k + Pi/m)/b^(k+r) = b^(1-r)*(b*cos(Pi/m) + cos(h - Pi/m)/(1 + b^2 - 2*b*cos*(Pi/m)).