A373057 Numbers k such that iphi(k) divides k, where iphi is the infinitary Euler phi function (A064380).
2, 6, 8, 10, 60, 70, 120, 128, 136, 9822, 18632, 32768, 32896, 36720, 69726, 73662, 73686, 73734, 85962, 86046, 87114, 87198, 87222, 87258, 87294, 87306, 87342, 87366, 87546, 87558, 88014, 88278, 88302, 88338, 88386, 127326, 128046, 128082, 128382, 128406, 128598
Offset: 1
Keywords
Examples
2 is a term since ipghi(2) = 1 divides 2. 6 is a term since ipghi(6) = 6 divides 6. 60 is a term since ipghi(60) = 30 divides 60.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..218
Programs
-
Mathematica
infCoprimeQ[n1_, n2_] := Module[{g = GCD[n1, n2]}, If[g == 1, True, AllTrue[ FactorInteger[g][[;; , 1]], BitAnd @@ IntegerExponent[{n1, n2}, #] == 0 &]]]; q[n_] := Divisible[n, Sum[Boole[infCoprimeQ[j, n]], {j, 1, n-1}]]; Select[Range[2, 200], q]
-
PARI
isinfcoprime(n1, n2) = {my(g = gcd(n1, n2), p, e1, e2); if(g == 1, return(1)); p = factor(g)[, 1]; for(i=1, #p, e1 = valuation(n1, p[i]); e2 = valuation(n2, p[i]); if(bitand(e1, e2) > 0, return(0))); 1; } is(n) = if(n < 2, 0, !(n % sum(j = 1, n-1, isinfcoprime(j, n))));
Comments