A373088 a(n) = min{k : KroneckerSymbol(n, k) = -1} if n is not a square, 0 otherwise.
0, 0, 3, 2, 0, 2, 7, 5, 3, 0, 7, 2, 5, 2, 3, 13, 0, 3, 5, 2, 3, 2, 5, 3, 7, 0, 3, 2, 5, 2, 11, 7, 3, 5, 7, 2, 0, 2, 3, 11, 7, 3, 5, 2, 3, 2, 11, 3, 5, 0, 3, 2, 5, 2, 7, 7, 3, 5, 5, 2, 13, 2, 3, 5, 0, 3, 7, 2, 3, 2, 13, 3, 5, 5, 3, 2, 7, 2, 5, 11, 3, 0, 5, 2
Offset: 0
Keywords
Programs
-
Maple
K := (n, k) -> NumberTheory:-KroneckerSymbol(n, k): a := proc(n) if issqr(n) then return 0 fi; local k; k := 0; while true do if K(n, k) = -1 then return k fi; k := k + 1; od; -1; end: seq(a(n), n = 0..83);
-
PARI
a(n) = if (issquare(n), 0, my(k=1); while (kronecker(n,k) != -1, k++); k); \\ Michel Marcus, May 31 2024
-
SageMath
def A373088(n): if is_square(n): return 0 k = 0 while True: if kronecker_symbol(n, k) == -1: return k k += 1 return k print([A373088(n) for n in range(83)])
Formula
If n is not a square then a(n) is a prime number.