cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373096 a(n) = a([n/9]) + a([n/27]) + a([n/81]) + ..., where a(0) = 0, a(1) = 1, and [ ] = floor().

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Clark Kimberling, May 31 2024

Keywords

Comments

Every term is a Fibonacci number, and every positive Fibonacci number occurs.

Crossrefs

Programs

  • Maple
    A373096 := proc(n)
        option remember;
        if n <=1 then
            n;
        else
            add( procname(floor(n/3^k)),k=2..n) ;
        end if;
    end proc:
    seq(A373096(n),n=0..100) ; # R. J. Mathar, Jun 07 2024
  • Mathematica
    a[0] = 0; a[1] = 1;
    a[n_] := a[n] = Sum[a[Floor[n/3^k]], {k, 2, n}]
    Table[a[n], {n, 0, 570}]
  • PARI
    a(n) = if (n<=1, n, sum(k=2, n, a(n\3^k))); \\ Michel Marcus, Jun 01 2024

Formula

Following the first 3^2 terms (all zeros and ones): 3^2 ones, 3^2 zeros, 3^3 ones, 3^3 zeros, 3^4 twos, 3^4 zeros, 3^5 threes, 3^5 zeros, 3^6 fives, 3^6 zeros, etc.