cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A373379 Lexicographically earliest infinite sequence such that a(i) = a(j) => A003415(i) = A003415(j), A085731(i) = A085731(j) and A107463(i) = A107463(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 28, 40, 41, 42, 2, 43, 2, 44, 45, 46, 47, 48, 2, 49, 50, 51, 2, 52, 2, 53, 54, 55, 47, 56, 2, 57, 58, 59, 2, 60, 41, 61, 62, 63, 2, 64, 37, 65, 66, 67, 68, 69, 2, 70, 71, 72
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2024

Keywords

Comments

Restricted growth sequence transform of the triple [A003415(n), A085731(n), A107463(n)].
For all i, j >= 1:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A369051(i) = A369051(j),
a(i) = a(j) => A373363(i) = A373363(j),
a(i) = a(j) => A373364(i) = A373364(j).
Starts to differ from A300235 at n=153. - R. J. Mathar, Jun 06 2024

Crossrefs

Differs from A305895, A327931, and A353560 for the first time at n=1610, where a(1610) = 1112, while A305895(1610) = A327931(1610) = A353560(1610) = 1210.
Cf. also A373150, A373152, A373380.

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A085731(n) = gcd(A003415(n),n);
    A001414(n) = ((n=factor(n))[, 1]~*n[, 2]);
    A107463(n) = if(n<=1,n,if(isprime(n),1,A001414(n)));
    Aux373379(n) = [A003415(n), A085731(n), A107463(n)];
    v373379 = rgs_transform(vector(up_to, n, Aux373379(n)));
    A373379(n) = v373379[n];

A373268 Lexicographically earliest infinite sequence such that a(i) = a(j) => A003415(i) = A003415(j), A085731(i) = A085731(j) and A373145(i) = A373145(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 28, 40, 41, 21, 2, 42, 2, 43, 44, 45, 46, 47, 2, 48, 49, 50, 2, 51, 2, 52, 53, 54, 46, 55, 2, 56, 57, 58, 2, 59, 41, 60, 61, 62, 2, 63, 64, 65, 66, 67, 68, 69, 2, 70, 71, 72, 2, 73, 2, 74, 55
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2024

Keywords

Comments

Restricted growth sequence transform of the triple [A003415(n), A085731(n), A373145(n)].
For all i, j >= 1:
A373150(i) = A373150(j) => a(i) = a(j),
a(i) = a(j) => A373151(i) = A373151(j) => A373485(i) = A373485(j),
a(i) = a(j) => A373152(i) = A373152(j),
a(i) = a(j) => A373486(i) = A373486(j).

Crossrefs

Differs from A344025 and A369046 for the first time at n=91, where a(91) = 64, while A344025(91) = A369046(91) = 37.
Differs from A351236 for the first time at n=143, where a(143) = 100, while A351236(143) = 68.

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1,primepi(f[k, 1]-1),prime(i))); };
    Aux373268(n) = { my(d=A003415(n)); [d, gcd(d,n), gcd(d, A276085(n))]; };
    v373268 = rgs_transform(vector(up_to, n, Aux373268(n)));
    A373268(n) = v373268[n];
Showing 1-2 of 2 results.