A373173 Triangle read by rows: the exponential almost-Riordan array ( exp(exp(x)-1) | exp(x), exp(x)-1 ).
1, 1, 1, 2, 1, 1, 5, 1, 3, 1, 15, 1, 7, 6, 1, 52, 1, 15, 25, 10, 1, 203, 1, 31, 90, 65, 15, 1, 877, 1, 63, 301, 350, 140, 21, 1, 4140, 1, 127, 966, 1701, 1050, 266, 28, 1, 21147, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1, 115975, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1
Offset: 0
Examples
The triangle begins: 1; 1, 1; 2, 1, 1; 5, 1, 3, 1; 15, 1, 7, 6, 1; 52, 1, 15, 25, 10, 1; 203, 1, 31, 90, 65, 15, 1; ...
Links
- Y. Alp and E. G. Kocer, Exponential Almost-Riordan Arrays, Results Math 79, 173 (2024). See page 14.
Crossrefs
Programs
-
Mathematica
T[n_,0]:=n!SeriesCoefficient[Exp[Exp[x]-1],{x,0,n}]; T[n_,k_]:=(n-1)!/(k-1)!SeriesCoefficient[Exp[x](Exp[x]-1)^(k-1),{x,0,n-1}]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten
Formula
T(n,0) = n! * [x^n] exp(exp(x)-1); T(n,k) = (n-1)!/(k-1)! * [x^(n-1)] exp(x)*(exp(x)-1)^(k-1).
T(n,2) = A000225(n-1) for n > 1.