cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A359100 a(n) = (1/4) * Sum_{d|n} phi(5 * d).

Original entry on oeis.org

1, 2, 3, 4, 6, 6, 7, 8, 9, 12, 11, 12, 13, 14, 18, 16, 17, 18, 19, 24, 21, 22, 23, 24, 31, 26, 27, 28, 29, 36, 31, 32, 33, 34, 42, 36, 37, 38, 39, 48, 41, 42, 43, 44, 54, 46, 47, 48, 49, 62, 51, 52, 53, 54, 66, 56, 57, 58, 59, 72, 61, 62, 63, 64, 78, 66, 67, 68, 69, 84, 71, 72, 73, 74, 93, 76
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, EulerPhi[5 #] &]/4 &, 76] (* Michael De Vlieger, Dec 16 2022 *)
    f[p_, e_] := If[p == 5, (5^(e + 1) - 1)/4, p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 17 2022 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(5*d))/4;
    
  • PARI
    my(N=80, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(5*k)*x^k/(1-x^k))/4)

Formula

G.f.: Sum_{k>=1} phi(5 * k) * x^k / (4 * (1 - x^k)).
G.f.: Sum_{k>=0} x^(5^k) / (1 - x^(5^k))^2.
From Amiram Eldar, Dec 17 2022: (Start)
Multiplicative with a(5^e) = (5^(e+1)-1)/4, and a(p^e) = p if p != 5.
Dirichlet g.f.: zeta(s-1)*(1+1/(5^s-1)).
Sum_{k=1..n} a(k) ~ (25/48) * n^2. (End)
From Seiichi Manyama, Jun 04 2024: (Start)
G.f. A(x) satisfies A(x) = x/(1 - x)^2 + A(x^5).
If n == 0 (mod 5), a(n) = n + a(n/5) otherwise a(n) = n. (End)

A359099 a(n) = (1/6) * Sum_{d|n} phi(7 * d).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 8, 9, 10, 11, 12, 13, 16, 15, 16, 17, 18, 19, 20, 24, 22, 23, 24, 25, 26, 27, 32, 29, 30, 31, 32, 33, 34, 40, 36, 37, 38, 39, 40, 41, 48, 43, 44, 45, 46, 47, 48, 57, 50, 51, 52, 53, 54, 55, 64, 57, 58, 59, 60, 61, 62, 72, 64, 65, 66, 67, 68, 69, 80, 71, 72, 73, 74, 75, 76, 88, 78, 79
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, EulerPhi[7 #] &]/6 &, 79] (* Michael De Vlieger, Dec 16 2022 *)
    f[p_, e_] := If[p == 7, (7^(e + 1) - 1)/6, p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 17 2022 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(7*d))/6;
    
  • PARI
    my(N=80, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(7*k)*x^k/(1-x^k))/6)

Formula

G.f.: Sum_{k>=1} phi(7 * k) * x^k / (6 * (1 - x^k)).
G.f.: Sum_{k>=0} x^(7^k) / (1 - x^(7^k))^2.
From Amiram Eldar, Dec 17 2022: (Start)
Multiplicative with a(7^e) = (7^(e+1)-1)/6, and a(p^e) = p if p != 7.
Dirichlet g.f.: zeta(s-1)*(1+1/(7^s-1)).
Sum_{k=1..n} a(k) ~ (49/96) * n^2. (End)
From Seiichi Manyama, Jun 04 2024: (Start)
G.f. A(x) satisfies A(x) = x/(1 - x)^2 + A(x^7).
If n == 0 (mod 7), a(n) = n + a(n/7) otherwise a(n) = n. (End)

A373187 Expansion of Sum_{k>=0} x^(4^k) / (1 - x^(4^k))^4.

Original entry on oeis.org

1, 4, 10, 21, 35, 56, 84, 124, 165, 220, 286, 374, 455, 560, 680, 837, 969, 1140, 1330, 1575, 1771, 2024, 2300, 2656, 2925, 3276, 3654, 4144, 4495, 4960, 5456, 6108, 6545, 7140, 7770, 8601, 9139, 9880, 10660, 11700, 12341, 13244, 14190, 15466, 16215, 17296, 18424
Offset: 1

Views

Author

Seiichi Manyama, May 27 2024

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = x/(1 - x)^4 + A(x^4).
a(4*n+1) = A000292(4*n+1), a(4*n+2) = A000292(4*n+2), a(4*n+3) = A000292(4*n+3) and a(4*n+4) = A000292(4*n+4) + a(n+1) for n >= 0.

A373189 Expansion of Sum_{k>=0} x^(4^k) / (1 - x^(4^k))^3.

Original entry on oeis.org

1, 3, 6, 11, 15, 21, 28, 39, 45, 55, 66, 84, 91, 105, 120, 147, 153, 171, 190, 225, 231, 253, 276, 321, 325, 351, 378, 434, 435, 465, 496, 567, 561, 595, 630, 711, 703, 741, 780, 875, 861, 903, 946, 1056, 1035, 1081, 1128, 1260, 1225, 1275, 1326, 1469, 1431, 1485, 1540, 1701
Offset: 1

Views

Author

Seiichi Manyama, May 27 2024

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = x/(1 - x)^3 + A(x^4).
a(4*n+1) = A000217(4*n+1), a(4*n+2) = A000217(4*n+2), a(4*n+3) = A000217(4*n+3) and a(4*n+4) = A000217(4*n+4) + a(n+1) for n >= 0.

A373397 Expansion of Sum_{k>=0} x^(6^k) / (1 - x^(6^k))^2.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 7, 8, 9, 10, 11, 14, 13, 14, 15, 16, 17, 21, 19, 20, 21, 22, 23, 28, 25, 26, 27, 28, 29, 35, 31, 32, 33, 34, 35, 43, 37, 38, 39, 40, 41, 49, 43, 44, 45, 46, 47, 56, 49, 50, 51, 52, 53, 63, 55, 56, 57, 58, 59, 70, 61, 62, 63, 64, 65, 77, 67, 68, 69, 70, 71, 86, 73, 74, 75, 76, 77, 91
Offset: 1

Views

Author

Seiichi Manyama, Jun 04 2024

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = x/(1 - x)^2 + A(x^6).
If n == 0 (mod 6), a(n) = n + a(n/6) otherwise a(n) = n.
Showing 1-5 of 5 results.