A373198 Number of squarefree numbers from prime(n) to prime(n+1) - 1.
1, 1, 2, 2, 1, 3, 1, 3, 2, 2, 4, 3, 2, 2, 2, 4, 1, 4, 3, 1, 4, 2, 4, 5, 1, 2, 3, 1, 3, 7, 3, 3, 2, 6, 1, 3, 4, 3, 2, 4, 1, 7, 1, 3, 1, 8, 9, 2, 1, 3, 4, 1, 4, 4, 4, 4, 1, 3, 2, 2, 6, 8, 3, 1, 2, 10, 3, 5, 1, 1, 5, 4, 3, 3, 3, 3, 6, 3, 5, 7, 1, 6, 1, 5, 2, 4, 5
Offset: 1
Keywords
Examples
This is the sequence of row-lengths of A005117 treated as a triangle with row-sums A373197: 2 3 5 6 7 10 11 13 14 15 17 19 21 22 23 26 29 30 31 33 34 35 37 38 39 41 42 43 46 47 51 53 55 57 58
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Range[Prime[n],Prime[n+1]-1],SquareFreeQ]],{n,100}]
-
Python
from math import isqrt from sympy import prime, nextprime, mobius def A373198(n): p = prime(n) q = nextprime(p) r = isqrt(p-1)+1 return sum(mobius(k)*((q-1)//k**2) for k in range(r,isqrt(q-1)+1))+sum(mobius(k)*((q-1)//k**2-(p-1)//k**2) for k in range(1,r)) # Chai Wah Wu, Jun 01 2024
Formula
a(n) = A061398(n) + 1.