cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373203 a(n) = minimum k>1 such that n^k contains all distinct decimal digits of n.

Original entry on oeis.org

2, 2, 5, 5, 3, 2, 2, 5, 5, 3, 2, 2, 3, 5, 4, 6, 5, 5, 5, 7, 5, 3, 4, 7, 3, 2, 8, 2, 5, 3, 5, 4, 3, 3, 3, 6, 6, 5, 4, 3, 3, 6, 7, 4, 3, 4, 4, 4, 4, 3, 2, 3, 7, 5, 3, 2, 3, 5, 5, 3, 2, 3, 5, 2, 2, 3, 2, 3, 4, 5, 5, 3, 3, 3, 2, 3, 2, 5, 5, 5, 5
Offset: 0

Views

Author

James C. McMahon, May 27 2024

Keywords

Examples

			For n=12, a(12)=3 because 12^3=1728 contains all decimal digits of n. Compare to A253600(12)=2 because 12^2=144 contains any digit of n.
		

Crossrefs

Programs

  • Mathematica
    seq={}; Do[k=1;Until[ContainsAll[IntegerDigits[n^k],IntegerDigits[n] ],k++];AppendTo[seq,k] ,{n,0,80}];seq
  • PARI
    a(n) = my(k=2, d=Set(digits(n))); while(setintersect(Set(digits(n^k)), d) != d, k++); k; \\ Michel Marcus, Jun 01 2024
  • Python
    from itertools import count
    def a(n):
        s = set(str(n))
        return next(k for k in count(2) if s <= set(str(n**k)))
    print([a(n) for n in range(81)]) # Michael S. Branicky, May 27 2024
    

Formula

A253600(n) <= a(n) <= A045537(n). - Michael S. Branicky, May 28 2024
A111442(n) = n^a(n).