A373204 Decimal expansion of the imaginary part of the first zero, for real(s) >= 1/2, of the function Psi(s) = Sum_{n>=1} 1/n!^s.
4, 9, 0, 6, 8, 7, 6, 4, 3, 5, 1, 4, 2, 8, 5, 1, 3, 4, 7, 5, 3, 5, 1, 0, 8, 2, 5, 8, 3, 5, 5, 8, 5, 3, 5, 3, 1, 5, 3, 2, 8, 5, 6, 4, 6, 4, 8, 9, 9, 3, 3, 7, 6, 3, 5, 2, 0, 2, 8, 8, 9, 5, 2, 4, 8, 7, 0, 0, 8, 0, 9, 6, 8, 4, 9, 1, 6, 0, 4, 0, 6, 0, 1, 1
Offset: 1
Examples
4.9068764351428513475351082583558535315328564648993...
Links
- Roberto Trocchi, The Psi function and its zeros on the complex plane, June 21 2024.
Programs
-
Mathematica
Psi[s_, nmax_] := ParallelSum[1/n!^s, {n, 1, nmax}] FindRoot[{Re[Psi[x + y*I, 2000]], Im[Psi[x + y*I, 2000]]}, {{x, 1/2}, {y, 5}}, WorkingPrecision -> 1000][[2]][[2]]
Formula
Imaginary part of the first zero for real(s) >= 1/2, Psi(s) = 0, where Psi(s) = Sum_{n>=1} 1/n!^s.
Comments