cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Roberto Trocchi

Roberto Trocchi's wiki page.

Roberto Trocchi has authored 3 sequences.

A379605 Decimal expansion of sigma_sup = sup{real(s): Psi(s) = 0}, where Psi(s) = Sum_{n>=1} 1/n!^s.

Original entry on oeis.org

7, 2, 6, 3, 4, 7, 5, 0, 8, 5, 7, 6, 2, 0, 1, 1, 4, 5, 9, 4, 1, 6, 4, 0, 2, 6, 2, 2, 6, 9, 5, 2, 3, 2, 5, 0, 8, 5, 0, 1, 3, 4, 3, 3, 4, 3, 0, 0, 6, 4, 1, 2, 7, 8, 1, 8, 4, 6, 8, 3, 6, 3, 4, 1, 2, 6, 5, 6, 2, 9, 9, 1, 7, 8, 3, 2, 3, 2, 9, 9, 1, 1, 9, 3, 4, 0, 8, 9, 2, 3, 5, 9, 0, 6, 4, 4, 6, 9, 8, 3
Offset: 0

Author

Roberto Trocchi, Dec 27 2024

Keywords

Comments

Defining the Psi function to be Psi(s) = Sum_{n>=1} 1/n!^s, in the MathOverflow link I have posted the description of an algorithm to calculate the exact value of sigma_sup = sup{real(s): Psi(s) = 0}.
The value is approximately 0.726347508576.
So all the zeros of the Psi function seem to be in the critical strip 0 < real(s) < sigma_sup.
See my document on the zeros of the Psi function on the complex plane.

Examples

			0.726347508576201145941640262269523250850134334300641278184683634...
		

Crossrefs

Cf. A373204.

Programs

  • Mathematica
    Nmax = 200;
    Cn = {1}; kn = {0};
    For[n = 2, n <= Nmax, n = n + 1,
     If[PrimeQ[n],
      If[Cn[[n - 1]] == 1, AppendTo[kn, 1], AppendTo[kn, 0]];
      AppendTo[Cn, -1], PF = FactorInteger[n];
      For[m = 1; somma = 0, m <= Length[PF], m = m + 1,
       somma = somma + kn[[PF[[m]][[1]]]]*PF[[m]][[2]]];
      AppendTo[kn, Mod[somma, 2]];
      If[kn[[n]] == 0, AppendTo[Cn, Cn[[n - 1]]],
       AppendTo[Cn, -Cn[[n - 1]]]]]]
    NSolveValues[ {Sum[Cn[[n]]*n!^-sigma, {n, 1, Nmax}] == 0,
       sigma > 1/10, sigma < 1}, sigma, WorkingPrecision -> 200][[1]]

Formula

sigma_sup = sup{real(s): Psi(s) = 0}, where Psi(s) = Sum_{n>=1} 1/n!^s.

A373204 Decimal expansion of the imaginary part of the first zero, for real(s) >= 1/2, of the function Psi(s) = Sum_{n>=1} 1/n!^s.

Original entry on oeis.org

4, 9, 0, 6, 8, 7, 6, 4, 3, 5, 1, 4, 2, 8, 5, 1, 3, 4, 7, 5, 3, 5, 1, 0, 8, 2, 5, 8, 3, 5, 5, 8, 5, 3, 5, 3, 1, 5, 3, 2, 8, 5, 6, 4, 6, 4, 8, 9, 9, 3, 3, 7, 6, 3, 5, 2, 0, 2, 8, 8, 9, 5, 2, 4, 8, 7, 0, 0, 8, 0, 9, 6, 8, 4, 9, 1, 6, 0, 4, 0, 6, 0, 1, 1
Offset: 1

Author

Roberto Trocchi, Jun 21 2024

Keywords

Comments

Defining the Psi function to be Psi(s) = Sum_{n>=1} 1/n!^s, the first zero, for real(s) >= 1/2, is approximately s1 = 0.6418158643 + 4.9068764351*i.
All the zeros of the Psi function seem (conjecturally) to be in the critical strip 0 < real(s) <= 1.
Moreover, all the zeros of the Psi function seem (conjecturally) to be in the strip 0 < real(s) <= 0.73. [There is obviously something wrong here! - N. J. A. Sloane, Dec 30 2024]
See my document on the zeros of the Psi function on the complex plane.

Examples

			4.9068764351428513475351082583558535315328564648993...
		

Crossrefs

Programs

  • Mathematica
    Psi[s_, nmax_] := ParallelSum[1/n!^s, {n, 1, nmax}]
    FindRoot[{Re[Psi[x + y*I, 2000]], Im[Psi[x + y*I, 2000]]}, {{x, 1/2}, {y, 5}}, WorkingPrecision -> 1000][[2]][[2]]

Formula

Imaginary part of the first zero for real(s) >= 1/2, Psi(s) = 0, where Psi(s) = Sum_{n>=1} 1/n!^s.

A370697 Decimal expansion of Sum_{p prime} 1/p!^p.

Original entry on oeis.org

2, 5, 4, 6, 2, 9, 6, 2, 9, 6, 6, 9, 8, 1, 7, 3, 8, 6, 8, 3, 1, 2, 7, 5, 7, 3, 2, 2, 7, 0, 2, 0, 6, 9, 7, 0, 4, 2, 4, 0, 9, 9, 9, 7, 8, 9, 1, 3, 1, 4, 2, 1, 7, 8, 4, 3, 7, 9, 8, 4, 7, 6, 6, 1, 9, 0, 3, 8, 2, 0, 1, 4, 7, 3, 2, 7, 7, 3, 1, 5, 1, 7, 5, 6, 8, 4, 8, 6, 6, 4, 0, 4, 9, 8, 2, 3, 7, 2
Offset: 0

Author

Roberto Trocchi, Jun 07 2024

Keywords

Examples

			0.25462962966981738683127573227020697042409997891314217843798476619...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[1/Prime[n]!^Prime[n], {n, 1, 12}], 10, 1000] // First
  • PARI
    suminf(k=1,1/prime(k)!^prime(k)) \\ Hugo Pfoertner, Jun 22 2024