cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373217 Expansion of Sum_{k>=0} x^(7^k) / (1 - x^(7^k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Seiichi Manyama, May 28 2024

Keywords

Comments

The number of powers of 7 that divide n. - Amiram Eldar, Mar 29 2025

Crossrefs

Programs

  • Mathematica
    a[n_] := 1 + IntegerExponent[n, 7]; Array[a, 100] (* Amiram Eldar, May 29 2024 *)
  • PARI
    a(n) = valuation(n, 7)+1;

Formula

G.f. A(x) satisfies A(x) = x/(1 - x) + A(x^7).
a(7*n+1) = a(7*n+2) = ... = (7*n+6) = 1 and a(7*n+7) = 1 + a(n+1) for n >= 0.
Multiplicative with a(p^e) = e+1 if p = 7, 1 otherwise.
a(n) = -Sum_{d|n} mu(7*d) * tau(n/d).
a(n) = A214411(n) + 1.
From Amiram Eldar, May 29 2024: (Start)
Dirichlet g.f.: (7^s/(7^s-1)) * zeta(s).
Sum_{k=1..n} a(k) ~ (7/6) * n. (End)
G.f.: Sum_{i>=1, j>=0} x^(i*7^j). - Seiichi Manyama, Mar 23 2025
a(n) = A214411(7*n). - R. J. Mathar, Jun 28 2025