A374450 Number of edge covers of the fan graph F_{n,4}.
59, 1289, 23123, 376913, 5875499, 89719769, 1357012163, 20434006433, 307062808859, 4609813953449, 69174320548403, 1037804612461553, 15568397893099019, 233535269569297529, 3503094152437895843, 52546868050923710273, 788206211120541289979, 11823115499323514984009, 177346888817516282750483
Offset: 1
Links
- Paolo Xausa, Table of n, a(n) for n = 1..800
- Eric Weisstein's World of Mathematics, Edge Cover.
- Eric Weisstein's World of Mathematics, Fan Graph.
- Index entries for linear recurrences with constant coefficients, signature (26,-196,486,-315).
Programs
-
Mathematica
A374450[n_] := 8*15^n - 12*7^n + 9*3^n - 4; Array[A374450, 20] (* or *) LinearRecurrence[{26, -196, 486, -315}, {59, 1289, 23123, 376913}, 20] (* Paolo Xausa, Jan 22 2025 *)
-
Python
def a_n(n): return 8 * 15**n - 12*7^n + 9 * 3**n + 3
Formula
a(n) = 8*15^n - 12*7^n + 9*3^n - 4.
From Stefano Spezia, Jul 08 2024: (Start)
G.f.: x*(59 - 245*x + 1173*x^2 - 315*x^3)/((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)).
E.g.f.: 8*exp(15*x) - 12*exp(7*x) + 9*exp(3*x) - 4*exp(x) - 1. (End)
Comments