cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A373296 Euler transform of A055457.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 12, 17, 25, 35, 51, 69, 96, 129, 175, 235, 312, 410, 539, 700, 913, 1173, 1508, 1923, 2450, 3106, 3921, 4928, 6180, 7715, 9622, 11935, 14783, 18243, 22470, 27601, 33819, 41327, 50407, 61325, 74494, 90244, 109154, 131732, 158725, 190892, 229171, 274633, 328615
Offset: 0

Views

Author

Seiichi Manyama, May 31 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=50, x='x+O('x^N)); Vec(1/prod(k=1, N, (1-x^k)^(valuation(k, 5)+1)))

Formula

G.f.: A(x) = 1/Product_{i>=1, j>=0} (1 - x^(i * 5^j)).
Let A(x) be the g.f. of this sequence, and P(x) be the g.f. of A000041, then P(x) = A(x)/A(x^5).

A373297 Euler transform of A373216.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 16, 24, 33, 47, 63, 90, 118, 161, 212, 283, 367, 487, 624, 812, 1037, 1332, 1685, 2152, 2700, 3409, 4259, 5333, 6617, 8242, 10165, 12568, 15436, 18970, 23178, 28360, 34487, 41970, 50850, 61599, 74322, 89696, 107809, 129572, 155235, 185881, 221936
Offset: 0

Views

Author

Seiichi Manyama, May 31 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=50, x='x+O('x^N)); Vec(1/prod(k=1, N, (1-x^k)^(valuation(k, 6)+1)))

Formula

G.f.: A(x) = 1/Product_{i>=1, j>=0} (1 - x^(i * 6^j)).
Let A(x) be the g.f. of this sequence, and P(x) be the g.f. of A000041, then P(x) = A(x)/A(x^6).

A373298 Euler transform of A373217.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 16, 23, 32, 45, 61, 84, 112, 152, 200, 265, 345, 451, 581, 750, 960, 1225, 1552, 1965, 2470, 3101, 3872, 4830, 5990, 7421, 9152, 11270, 13825, 16932, 20672, 25191, 30608, 37129, 44920, 54257, 65376, 78660, 94419, 113172, 135370, 161687, 192752
Offset: 0

Views

Author

Seiichi Manyama, May 31 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=50, x='x+O('x^N)); Vec(1/prod(k=1, N, (1-x^k)^(valuation(k, 7)+1)))

Formula

G.f.: A(x) = 1/Product_{i>=1, j>=0} (1 - x^(i * 7^j)).
Let A(x) be the g.f. of this sequence, and P(x) be the g.f. of A000041, then P(x) = A(x)/A(x^7).
Showing 1-3 of 3 results.