cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373305 Sum over all complete compositions of n of the element set cardinality.

Original entry on oeis.org

0, 1, 1, 5, 7, 15, 41, 77, 161, 325, 727, 1460, 3058, 6228, 12815, 26447, 54099, 110800, 226247, 461531, 939678, 1914189, 3890279, 7905962, 16045367, 32550830, 65971827, 133645098, 270561031, 547468214, 1107208235, 2238242852, 4522679064, 9135128917
Offset: 0

Views

Author

Alois P. Heinz, May 31 2024

Keywords

Comments

A complete composition of n has element set [k] with k<=n (without gaps).

Examples

			a(1) = 1: 1.
a(2) = 1: 11.
a(3) = 5 = 2 + 2 + 1: 12, 21, 111.
a(4) = 7 = 2 + 2 + 2 + 1: 112, 121, 211, 1111.
a(5) = 15 = 7*2 + 1: 122, 212, 221, 1112, 1121, 1211, 2111, 11111.
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i, t) `if`(n=0, `if`(i=0, t!, 0),
         `if`(i<1 or n add(g(n, k, 0)*k, k=0..floor((sqrt(1+8*n)-1)/2)):
    seq(a(n), n=0..33);
  • Mathematica
    g[n_, i_, t_] := If[n == 0, If[i == 0, t!, 0], If[i < 1 || n < i*(i+1)/2, 0, b[n, i, t]]];
    b[n_, i_, t_] := b[n, i, t] = Sum[g[n-i*j, i-1, t+j]/j!, {j, 1, n/i}];
    a[n_] := Sum[g[n, k, 0]*k, {k, 0, Floor[(Sqrt[1 + 8*n] - 1)/2]}];
    Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Jun 08 2024, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..A003056(n)} k * A373118(n,k).