A373305 Sum over all complete compositions of n of the element set cardinality.
0, 1, 1, 5, 7, 15, 41, 77, 161, 325, 727, 1460, 3058, 6228, 12815, 26447, 54099, 110800, 226247, 461531, 939678, 1914189, 3890279, 7905962, 16045367, 32550830, 65971827, 133645098, 270561031, 547468214, 1107208235, 2238242852, 4522679064, 9135128917
Offset: 0
Keywords
Examples
a(1) = 1: 1. a(2) = 1: 11. a(3) = 5 = 2 + 2 + 1: 12, 21, 111. a(4) = 7 = 2 + 2 + 2 + 1: 112, 121, 211, 1111. a(5) = 15 = 7*2 + 1: 122, 212, 221, 1112, 1121, 1211, 2111, 11111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
g:= proc(n, i, t) `if`(n=0, `if`(i=0, t!, 0), `if`(i<1 or n add(g(n, k, 0)*k, k=0..floor((sqrt(1+8*n)-1)/2)): seq(a(n), n=0..33);
-
Mathematica
g[n_, i_, t_] := If[n == 0, If[i == 0, t!, 0], If[i < 1 || n < i*(i+1)/2, 0, b[n, i, t]]]; b[n_, i_, t_] := b[n, i, t] = Sum[g[n-i*j, i-1, t+j]/j!, {j, 1, n/i}]; a[n_] := Sum[g[n, k, 0]*k, {k, 0, Floor[(Sqrt[1 + 8*n] - 1)/2]}]; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Jun 08 2024, after Alois P. Heinz *)
Comments