cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373310 Expansion of g.f. A(x) satisfying A( A(x) - C(x) ) = x^2, where C(x) = x + C(x)^2 is the Catalan function (A000108).

Original entry on oeis.org

1, 2, 2, 3, 14, 48, 132, 406, 1430, 4952, 16796, 58416, 208012, 744468, 2674440, 9688043, 35357670, 129674822, 477638700, 1767128768, 6564120420, 24466875156, 91482563640, 343056839170, 1289904147324, 4861959143296, 18367353072152, 69533492095732, 263747951750360
Offset: 1

Views

Author

Paul D. Hanna, Jul 07 2024

Keywords

Comments

When is a(n) odd? It appears that a(n) is odd iff n = 2^A279430(m) for some m >= 1.

Examples

			G.f.: A(x) = x + 2*x^2 + 2*x^3 + 3*x^4 + 14*x^5 + 48*x^6 + 132*x^7 + 406*x^8 + 1430*x^9 + 4952*x^10 + 16796*x^11 + 58416*x^12 + 208012*x^13 + 744468*x^14 + ...
where A( A(x) - C(x) ) = x^2 and C(x) = x + C(x)^2.
RELATED SERIES.
C(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 + ... + A000108(n)*x^n + ...
where C(x) = (1 - sqrt(1 - 4*x))/2.
Let B(x) be the series reversion of A(x), B(A(x)) = x, then
B(x) = x - 2*x^2 + 6*x^3 - 23*x^4 + 90*x^5 - 370*x^6 + 1568*x^7 - 6802*x^8 + 30032*x^9 - 134422*x^10 + ... + A373311(n)*x^n + ...
where B(x^2) = A(x) - C(x).
SPECIFIC VALUES.
A(-1/4) = -0.151237013399100067547709926686882225273392538412193459646...
where A( A(-1/4) - (1 - sqrt(2))/2 ) = 1/16
and A(-1/4) = A(1/4) - sqrt(2)/2.
A(1/4) = 0.555869767787447456853134435417966814011443399276280576942...
where A( A(1/4) - 1/2 ) = 1/16.
A(2/9) = 0.378446516826872823814622014107284217010617354150456751846...
where A( A(2/9) - 1/3 ) = 4/81.
A(3/16) = 0.28291412722740108459963161876861779881422380402719433505...
where A( A(3/16) - 1/4 ) = 9/256.
A(1/6) = 0.237675676844188232385878239540046791458387220170448083864...
where A( A(1/6) - (1 - sqrt(1/3))/2 ) = 1/36.
A(1/8) = 0.161604924202227811342812683399402861708621568115394014892...
where A( A(1/8) - (1 - sqrt(1/2))/2 ) = 1/64.
A(1/10) = 0.12250744402428685742299038142775672992059218375368127702...
where A( A(1/10) - (1 - sqrt(3/5))/2 ) = 1/100.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = x +x*O(x^n), C = serreverse(x-x^2 +x*O(x^n)));
    for(i=1,#binary(n), A = C + subst(serreverse(A),x,x^2)); polcoeff(A,n)}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n, along with the Catalan function C(x), satisfies the following formulas.
(1) A( A(x) - C(x) ) = x^2.
(2) A(x) = B(x^2) + C(x), where B(A(x)) = x (cf. A373311).
(3) A( A(x-x^2) - x ) = x^2*(1-x)^2.
(4) A(x - x^2) = x + B( x^2*(1-x)^2 ), where B(A(x)) = x.
(5) a(2*n+1) = A000108(2*n) = binomial(4*n,2*n)/(2*n+1) for n >= 0.